Diagonalisierbarkeit < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:51 Di 18.11.2014 | Autor: | eva4eva |
Hallo!
Kann man das so aufschreiben?
Die nxn-Matrix A über K ist diagonalisierbar
<=> es gibt für [mm] K^n [/mm] eine Basis aus Eigenvektoren von A
<=> die algebraische Vielfachheit des charakt. Polynoms p von A ist gleich der geometrischen Vvh.
<=> es gibt eine Diag.matrix, zu der A ähnlich ist
<=> p zerfällt in Linearfaktoren ohne mehrfache Nullstellen
<=> [mm] K^n [/mm] ist die direkte Summe aus den Eigenräumen zu den verschiedenen Eigenwerten von A
Fehlt noch etwas wichtiges?
Irgendwo ist bestimmt etwas ungenau oder falsch, bin mir auch nicht sicher, ob man das mit Äquivalenzen schreiben kann.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:09 Di 18.11.2014 | Autor: | MacMath |
> Hallo!
> Kann man das so aufschreiben?
>
> Die nxn-Matrix A über K ist diagonalisierbar
> <=> es gibt für [mm]K^n[/mm] eine Basis aus Eigenvektoren von A
> <=> die algebraische Vielfachheit des charakt. Polynoms p
> von A ist gleich der geometrischen Vvh.
> <=> es gibt eine Diag.matrix, zu der A ähnlich ist
> <=> p zerfällt in Linearfaktoren ohne mehrfache
> Nullstellen
> <=> [mm]K^n[/mm] ist die direkte Summe aus den Eigenräumen zu den
> verschiedenen Eigenwerten von A
>
> Fehlt noch etwas wichtiges?
> Irgendwo ist bestimmt etwas ungenau oder falsch, bin mir
> auch nicht sicher, ob man das mit Äquivalenzen schreiben
> kann.
Da ist noch so einiges nicht passend:
"die algebraische Vielfachheit des charakt. Polynoms p
von A ist gleich der geometrischen Vvh."
Was ist denn die algebraische Vielfachheit des Polynoms? Nullstellen haben Vielfachheiten in Polynomen. Darauf bezieht sich der Begriff "algebraische Vielfachheit". Schau noch einmal ins Skript ;)
"p zerfällt in Linearfaktoren ohne mehrfache Nullstellen"
So? Was ist denn das charakteristische Polynom der Nullmatrix oder der Einheitsmatrix? Fällt dir etwas auf?
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:28 Di 18.11.2014 | Autor: | eva4eva |
> Da ist noch so einiges nicht passend:
> "die algebraische Vielfachheit des charakt. Polynoms p
> von A ist gleich der geometrischen Vvh."
> Was ist denn die algebraische Vielfachheit des Polynoms?
> Nullstellen haben Vielfachheiten in Polynomen. Darauf
> bezieht sich der Begriff "algebraische Vielfachheit". Schau
> noch einmal ins Skript ;)
Das ist mir klar, habe es nur kurz (und mißverständlich) formuliert. Man liest oft kurz: "Algebrasche Vvh = Geometr. Vvh."
Letztere ist die Dim. des Eigenraums zum betreffenden Eigenwert.
> "p zerfällt in Linearfaktoren ohne mehrfache Nullstellen"
> So? Was ist denn das charakteristische Polynom der
> Nullmatrix oder der Einheitsmatrix? Fällt dir etwas auf?
Trifft dies nicht zu (?):
Wenn p in Lin.fakt. zerfällt und keine mehrfachen Nst. hat => A diag.bar.
War vermutl. die oben aufgeführte Äquivalenz falsch? ->
Die Nullmatrix hat mehrfache Nst. in p und ist schon eine Diag.matrix, analog für die Einheitsmatrix...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:33 Di 18.11.2014 | Autor: | fred97 |
> > Da ist noch so einiges nicht passend:
> > "die algebraische Vielfachheit des charakt. Polynoms p
> > von A ist gleich der geometrischen Vvh."
> > Was ist denn die algebraische Vielfachheit des
> Polynoms?
> > Nullstellen haben Vielfachheiten in Polynomen. Darauf
> > bezieht sich der Begriff "algebraische Vielfachheit". Schau
> > noch einmal ins Skript ;)
>
> Das ist mir klar, habe es nur kurz (und mißverständlich)
> formuliert. Man liest oft kurz: "Algebrasche Vvh = Geometr.
> Vvh."
> Letztere ist die Dim. des Eigenraums zum betreffenden
> Eigenwert.
>
> > "p zerfällt in Linearfaktoren ohne mehrfache Nullstellen"
> > So? Was ist denn das charakteristische Polynom der
> > Nullmatrix oder der Einheitsmatrix? Fällt dir etwas auf?
>
>
> Trifft dies nicht zu (?):
> Wenn p in Lin.fakt. zerfällt und keine mehrfachen Nst. hat
> => A diag.bar.
So stimmts.
> War vermutl. die oben aufgeführte Äquivalenz falsch? ->
Genau !
> Die Nullmatrix hat mehrfache Nst. in p und ist schon eine
> Diag.matrix, analog für die Einheitsmatrix...
So ist es.
FRED
>
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:06 Di 18.11.2014 | Autor: | eva4eva |
OK, danke.
Noch eine Nachfrage bzgl. "Welche Matrizen liegen in der Konjugationsklasse einer vorgeg. Diag.matrix D?"
Alle Matrizen A, für die
(1) ihr charakt. Polynom p gleich dem charakt. Polynom von D ist => p von A zerfällt in Lin.fakt.
(2) für alle Eigenwerte von A gilt: Algebr. Vvh.=Geom. Vvh.
[(1),(2) müssen schon gleichzeitig gelten, oder?]
Ist die Kombination aus den Aussagen (1) und (2) gleichbedeutend zu Aussage (3)?
(3) p von A zerfällt in Lin.fakt. ohne mehrfache Nst.
Falls ja:
Daraus würde ja folgen, dass (2) bedeutet, dass es keine mehrfachen Nullstellen gibt, oder?
Jedoch kann ja eine doppelte Nst. einen 2-dim. Eigenraum erzeugen, wodurch (2) erfüllt wäre, (1) jedoch nicht: Ein Faktor in der Zerlegung von p wäre dann nicht-linear, weil der Form [mm] (p1-m)^2. [/mm] -> Widerspruch.
"In Linearfaktoren zerfallen" bedeutet doch eine Faktorisierung ohne Potenzen >1, oder?
Mglw. ist das Thema überhaupt nicht sonderlich kompliziert und ich denke im Nebel herum.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:19 Do 20.11.2014 | Autor: | MacMath |
> OK, danke.
>
> Noch eine Nachfrage bzgl. "Welche Matrizen liegen in der
> Konjugationsklasse einer vorgeg. Diag.matrix D?"
>
> Alle Matrizen A, für die
> (1) ihr charakt. Polynom p gleich dem charakt. Polynom von
> D ist => p von A zerfällt in Lin.fakt.
> (2) für alle Eigenwerte von A gilt: Algebr. Vvh.=Geom.
> Vvh.
> [(1),(2) müssen schon gleichzeitig gelten, oder?]
Sieht gut aus.
> Ist die Kombination aus den Aussagen (1) und (2)
> gleichbedeutend zu Aussage (3)?
>
> (3) p von A zerfällt in Lin.fakt. ohne mehrfache Nst.
Nein.
Gegenbeispiel sind Einheitsmatrix und Nullmatrix. Die Konjugationsklassen von beiden enthalten nur dieses eine Element. Das charakteristische Polynom zerfällt in Linearfaktoren mit einer mehrfachen Nullstelle.
Ich verstehe gar nicht, warum du dich so an mehrfachen Nullstellen aufhängst.
Nimm eine Matrix, deren charakteristisches Pol. in LF zerfällt.
WENN alle Nullstellen verschieden sind (also alle EW paarweise verschieden) dann ist die Matrix schon diagonalisierbar.
Aber niemand erwartet von einer Diagonalmatrix, dass auf der Hauptdiagonale immer nur verschiedene Werte stehen. Dort stehen aber gerade die Eigenwerte
> Falls ja:
> Daraus würde ja folgen, dass (2) bedeutet, dass es keine
> mehrfachen Nullstellen gibt, oder?
> Jedoch kann ja eine doppelte Nst. einen 2-dim. Eigenraum
> erzeugen, wodurch (2) erfüllt wäre, (1) jedoch nicht: Ein
> Faktor in der Zerlegung von p wäre dann nicht-linear, weil
> der Form [mm](p1-m)^2.[/mm] -> Widerspruch.
>
> "In Linearfaktoren zerfallen" bedeutet doch eine
> Faktorisierung ohne Potenzen >1, oder?
>
> Mglw. ist das Thema überhaupt nicht sonderlich kompliziert
> und ich denke im Nebel herum.
>
>
>
>
>
|
|
|
|