www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Determinante und Submersion
Determinante und Submersion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante und Submersion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 Fr 29.06.2012
Autor: Gedro

Aufgabe
Zeige, dass det: [mm] M_{n}(\IR)\to\IR [/mm] in allen [mm] A\in GL_{n}(\IR) [/mm] eine [mm] C^{\infty}-Submersion [/mm] ist.

Hallo,

zu der Aufgabe habe ich bis jetzt folgendes:

Die Ableitung der Determinanten an der Einheitsmatrix sieht folgendermaßen aus:
[mm] Ddet(E_{n}):M_{n}(\IR)\to\IR, Ddet(E_{n})(A)=spur(A) [/mm]

Dies ist offensichtlich eine [mm] C^{\infty}-Submersion. [/mm]
Nun hat mir der Prof. den Hinweis gegeben, dass ich diese Ableitung nutzen kann, um mit einem Trick zu zeigen, dass det an allen Stellen eine [mm] C^{\infty}-Submersion [/mm] ist.
Ich habe jetzt schon länger überlegt, bin aber auf nichts gekommen. Da ich noch keine Lineare Algebra 2 hatte, wollte ich fragen, ob ich das lösen kann ohne großartige Kenntnisse der Linearen Algebra?

Gruß,
Gedro

        
Bezug
Determinante und Submersion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:23 Fr 29.06.2012
Autor: SEcki


> Ich habe jetzt schon länger überlegt, bin aber auf nichts
> gekommen. Da ich noch keine Lineare Algebra 2 hatte, wollte
> ich fragen, ob ich das lösen kann ohne großartige
> Kenntnisse der Linearen Algebra?

Ja. [m]det(AB)=det(A)det(B)[/m] reicht aus zu wissen.

SEcki


Bezug
                
Bezug
Determinante und Submersion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:05 Sa 30.06.2012
Autor: Gedro

Achso, also könnte ich folgendes machen:

det(AB) = det(A)det(B) [mm] \Rightarrow [/mm] Ddet(A) = Ddet(AE) = D(det(A)det(E))

[mm] Ddet(A):\IR^{n^{2}}\to\IR [/mm]

Jetzt bin ich ein wenig verwirrt, wonach leite ich jetzt ab? Nach E oder nach beiden? Also:
1)D(det(A)det(E))= Ddet(E)*det(A) [mm] \Rightarrow [/mm] B [mm] \mapsto [/mm] spur(B)*det(A)
2)D(det(A)det(E))= Ddet(E)det(A)+Ddet(A)det(E) = Ddet(E)det(A)+Ddet(A) [mm] \Rightarrow B\mapsto [/mm] spur(B)*det(A)+Ddet(A)(B)

Bei 2) könnte ich ja immer noch nicht sagen, ob Ddet(A) surjektiv ist, da ich nicht weiss wie Ddet(A)(B) aussieht. Im schlimmsten Fall ist es das additiv Inverse von spur(B)*det(A).

Gruß,
Gedro


Bezug
                        
Bezug
Determinante und Submersion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 So 01.07.2012
Autor: SEcki


> Jetzt bin ich ein wenig verwirrt, wonach leite ich jetzt
> ab? Nach E oder nach beiden? Also:

Die Lineariserung in A.

Es gilt doch: [m]d(det(A))(B)=\lim_{t\to 0} \bruch{det(A-tB)}{t}[/m]. Jetzt forme das mal um.

> Bei 2) könnte ich ja immer noch nicht sagen, ob Ddet(A)
> surjektiv ist, da ich nicht weiss wie Ddet(A)(B) aussieht.
> Im schlimmsten Fall ist es das additiv Inverse von
> spur(B)*det(A).

Damit die Linearform surjektiv ist, reicht es hier ja auch zu zeigen, dass sie nicht identisch 0 ist (warum?), und damit reicht es ja, dass nur fuer passende B auszurechnen.

SEcki


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]