www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Determinante mit Variablen
Determinante mit Variablen < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante mit Variablen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 08:32 Di 14.07.2015
Autor: rsprsp

Aufgabe
Berechnen Sie die Determinanten der folgenden Matrizen mit a, b, x ∈ R

A = [mm] \pmat{ 3-x & 2 & 1 \\ 2 & -1-x & 3 \\ 5 & 0 & -3-x} [/mm]

B = [mm] \pmat{ 1 & a + b & a-b & a^2-b^2 \\ 1 & a + b + 2 & 2a & 2a^2-2ab \\ 1 & a + b-2 & 3-2b & 2ab-2b^2 \\ -1 & -a-b & 3-a + b & 4-a^2 + b^2} [/mm]



Mittels Regel von Sarrus
A = [mm] \pmat{ 3-x & 2 & 1 \\ 2 & -1- x & 3 \\ 5 & 0 & -3-x} [/mm] = [mm] -x^3-x^2+18x+56 [/mm]

Mittels Gauß-Verfahren
B = [mm] \pmat{ 1 & a + b & a - b & a^2 - b^2 \\ 1 & a + b + 2 & 2a & 2a^2 - 2ab \\ 1 & a + b - 2 & 3 - 2b & 2ab - 2b^2 \\ -1 & -a - b & 3- a + b & 4 - a^2 + b^2} [/mm]
Meine Umformungen:
-I+II [mm] \leadsto [/mm] II
-I+III [mm] \leadsto [/mm] III
I+IV [mm] \leadsto [/mm] IV
II+III [mm] \leadsto [/mm] III
(3/(2a-2b-3))*III+IV [mm] \leadsto [/mm] IV
Somit wirds aus [mm] \pmat{ 1 & a + b & a - b & a^2 - b^2 \\ 1 & a + b + 2 & 2a & 2a^2 - 2ab \\ 1 & a + b - 2 & 3 - 2b & 2ab - 2b^2 \\ -1 & -a - b & 3- a + b & 4 - a^2 + b^2} \leadsto \pmat{ 1 & a + b & a - b & a^2 - b^2 \\ 0 & 2 & -a+3b & a^2 + b^2 - 2ab \\ 0 & 0 & -2a + 2b + 3 & 0 \\ 0 & 0 & 0 & 4 } [/mm]
det [mm] \pmat{ 1 & a + b & a - b & a^2 - b^2 \\ 0 & 2 & -a+3b & a^2 + b^2 - 2ab \\ 0 & 0 & -2a + 2b + 3 & 0 \\ 0 & 0 & 0 & 4 } [/mm] = 1*2*((-2a+2b+3)*4) = -16a+16b+24






        
Bezug
Determinante mit Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:34 Di 14.07.2015
Autor: fred97


> Berechnen Sie die Determinanten der folgenden Matrizen mit
> a, b, x ∈ R
>  
> A = [mm]\pmat{ 3-x & 2 & 1 \\ 2 & -1-x & 3 \\ 5 & 0 & -3-x}[/mm]
>  
> B = [mm]\pmat{ 1 & a + b & a-b & a^2-b^2 \\ 1 & a + b + 2 & 2a & 2a^2-2ab \\ 1 & a + b-2 & 3-2b & 2ab-2b^2 \\ -1 & -a-b & 3-a + b & 4-a^2 + b^2}[/mm]
>  
>
> Mittels Regel von Sarrus
>  A = [mm]\pmat{ 3-x & 2 & 1 \\ 2 & -1- x & 3 \\ 5 & 0 & -3-x}[/mm]
> = [mm]-x^3-x^2+18x+56[/mm]

Das ist O.K.


>  
> Mittels Gauß-Verfahren
>  B = [mm]\pmat{ 1 & a + b & a - b & a^2 - b^2 \\ 1 & a + b + 2 & 2a & 2a^2 - 2ab \\ 1 & a + b - 2 & 3 - 2b & 2ab - 2b^2 \\ -1 & -a - b & 3- a + b & 4 - a^2 + b^2}[/mm]
>  
> Meine Umformungen:
>  -I+II [mm]\leadsto[/mm] II


Da hast Du schon eine Fehler. Die neue 2. Zeile lautet:

0    2    a+b   [mm] (a-b)^2 [/mm]

Zur Kontrolle: die Det. ist = 24 (unabhängig von a und b)

FRED

>  -I+III [mm]\leadsto[/mm] III
>  I+IV [mm]\leadsto[/mm] IV
>  II+III [mm]\leadsto[/mm] III
>  (3/(2a-2b-3))*III+IV [mm]\leadsto[/mm] IV
>  Somit wirds aus [mm]\pmat{ 1 & a + b & a - b & a^2 - b^2 \\ 1 & a + b + 2 & 2a & 2a^2 - 2ab \\ 1 & a + b - 2 & 3 - 2b & 2ab - 2b^2 \\ -1 & -a - b & 3- a + b & 4 - a^2 + b^2} \leadsto \pmat{ 1 & a + b & a - b & a^2 - b^2 \\ 0 & 2 & -a+3b & a^2 + b^2 - 2ab \\ 0 & 0 & -2a + 2b + 3 & 0 \\ 0 & 0 & 0 & 4 }[/mm]
>  
> det [mm]\pmat{ 1 & a + b & a - b & a^2 - b^2 \\ 0 & 2 & -a+3b & a^2 + b^2 - 2ab \\ 0 & 0 & -2a + 2b + 3 & 0 \\ 0 & 0 & 0 & 4 }[/mm]
> = 1*2*((-2a+2b+3)*4) = -16a+16b+24
>  
>
>
>
>  


Bezug
                
Bezug
Determinante mit Variablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:45 Di 14.07.2015
Autor: rsprsp

[mm] (a-b)^2 [/mm] ist doch [mm] a^2+b^2-2ab [/mm]

Ich habe die Matrix mit einem Onlinerechner nachgeprüft, es müsste also alles so stimmen.

Bezug
                        
Bezug
Determinante mit Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:58 Di 14.07.2015
Autor: Event_Horizon

Hallo!

Die vierte Komponente ist auch korrekt, aber bei der dritten hast du dich verrechnet:

$-(a-b)+2a=-a+b+2a=a+b\ [mm] \red{\neq-a+3b}$ [/mm]

Ich habe die ursprüngliche(!) Matrix auch mal in Maxima eingegeben, ich komme ebenfalls auf eine Determinante von 24.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]