www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Determinante mit Gauß
Determinante mit Gauß < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante mit Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Do 06.12.2012
Autor: Der-Madde-Freund

Hi,

ich habe im Skript folgende Sätze gefunden:
1. Addieren des Vielfachen einer Zeile zu einer anderen:
Die Determinante ändert sich nicht.

2. Multiplizieren einer Zeile mit einer Zahl c [mm] \not= [/mm] 0:
Die Determinante wird ebenfalls mit c multipliziert.

3. Vertauschen zweier Zeilen:
Die Determinante wird mit −1 multipliziert (wechselt ihr Vorzeichen).

------------------------------------------------------------------------------

Jetzt habe ich folgende Matrix, von der ich die Determinante mit Gauß bestimmen möchte:

[mm] A=\pmat{ 1 & 2 & -3 & 4 \\ 2 & 7 & 0 & 3 \\ 3 & -4 & 0 & -4 \\ 4 & 9 & 1 & 2} \to \pmat{ 1 & 2 & -3 & 4 \\ 0 & 4 & 6 & -5 \\ 0 & -10 & 9 & -16 \\ 0 & 1 & 13 & -14} \to \pmat{ 1 & 2 & -3 & 4 \\ 0 & 1 & 13 & -14 \\ 0 & -10 & 9 & -16 \\ 0 & 3 & 6 & -5} \to \pmat{ 1 & 2 & -3 & 4 \\ 0 & 1 & 13 & -14 \\ 0 & 0 & 139 & -156 \\ 0 & 0 & -33 & 37} \to \pmat{ 1 & 2 & -3 & 4 \\ 0 & 1 & 13 & -14 \\ 0 & 0 & 1 & -\frac{156}{139} \\ 0 & 0 & -33 & 37} \to \pmat{ 1 & 2 & -3 & 4 \\ 0 & 1 & 13 & -14 \\ 0 & 0 & 1 & -\frac{156}{139} \\ 0 & 0 & 0 & -\frac{5}{139}} [/mm]

Da ich einmal eine Zeile getauscht habe und eine Zeile in der 4. Matrix mit [mm] \frac{1}{139} [/mm] multipliziert habe, habe ich die Determinate wie folgt berechnet:

[mm] det(A)=1\cdot1\cdot1\cdot(-\frac{5}{139})\cdot(-1)\cdot139=5 [/mm]


Das Ergebnis stimmt auch nur mein Problem ist der fett hervorgehobene Satz im Skript: Ich habe ja in der 4. Matrix eine Zeile mit [mm] c=\frac{1}{139} [/mm] multipliziert. Die Determinante habe ich ja aber mit 139, also dem Kehrwert von c multipliziert, laut Skript müsste das ja auch auch [mm] \frac{1}{139} [/mm] sein... Was verstehe ich daran jetzt falsch?

        
Bezug
Determinante mit Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Do 06.12.2012
Autor: chrisno

Du möchtest den Wert der Determinante erhalten. Nachdem Du die Zeile mit 1/139 multiplizziert hast, ist das Gesamtergebnis umn diesen Faktor zu klein. Das bringst Du wieder in Ordnung, indem Du mit 139 multiplizierst.
Eine andere Betrachtunsweise: Du hast 139 "ausgeklammert".

Bezug
                
Bezug
Determinante mit Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Do 06.12.2012
Autor: Der-Madde-Freund

Ich verstehe das Verfahren an sich ja, wenn man das nicht täte, wäre im Prinzip ja jede Determinate auch Eins. Aber müsste im Skript dann nicht stehen, das man die Determinante dann mit [mm] \frac{1}{c} [/mm] multiplizieren muss?

Bezug
                        
Bezug
Determinante mit Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Do 06.12.2012
Autor: chrisno

Nein, das steht völlig richtig im Skript:
Wenn Du eine Zeile mit c multipliziertst, dann hat die Determinante dieser neuen Matrix den c-fachen Wert der Determinante der ursprünglichen Matrrix.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]