Determinante lösen < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Berechnen sie die Determinante:
[mm] \vmat{ 120 & 1 & -0,001 & 400 \\ 80 & 0,5 & 0,001 & 200\\ 40 & 0,5 & -0,002 & 0\\ 20 & 0 & -0,001 & 100 } [/mm] |
Mir genügt schon, wenn mir jemand sagt ob der Rechenweg formal korrekt ist.
Mein Lösungsvorschlag:
Mit Laplacescher Entwicklungssatz angefangen und die 3X3 Matrizen mit der Regel von Sarrus gelöst.
[mm] 120*(-1)^{1+120} \vmat{ 0,5 & 0,001 & 200 \\ 0,5 & -0,002 & 0\\ 0 & -0,001 & 100 } \vmat{ 0,5 & 0,001 \\ 0,5 & -0,002\\ 0 & -0,001 }
[/mm]
+
[mm] 80*(-1)^{2+120} \vmat{ 1 & -0,001 & 400 \\ 0,5 & -0,002 & 0\\ 0 & -0,001 & 100 } \vmat{ 1 & -0,001 \\ 0,5 & -0,002\\ 0 & -0,001 }
[/mm]
+
[mm] 40*(-1)^{3+120} \vmat{ 1 & -0,001 & 400 \\ 0,5 & 0,001 & 200\\ 0 & -0,001 & 100 } \vmat{ 1 & -0,001 \\ 0,5 & 0,001\\ 0 & -0,001 }
[/mm]
+
[mm] 20*(-1)^{4+120} \vmat{ 1 & -0,001 & 400 \\ 0,5 & 0,001 & 200\\ 0,5 & -0,002 & 0 } \vmat{ 1 & -0,001 \\ 0,5 & 0,001\\ 0,5 & -0,002 }
[/mm]
=-120 * (-1/4) + 80*(-1/4) - 40*(3/20) + 20*(3/10)
=10
Und letzte Frage, wie wende ich den Laplacescher Entwicklungssatz bei dieser Matrize an:
[mm] \vmat{ x³ & x² & x & 3 \\ x^{4} & x³ & 3x² & x\\ x³ & 3x² & x & 1\\ 3x^{4} & x³ & x² & x}
[/mm]
Vielen Dank für jede hilfreiche Antwort.
|
|
|
|
Hallo,
nach welcher Definition du deine Rechnung durchgeführt hast, erschließt sich mir jetzt nicht ganz beim Hinsehen. Zufällerigerweise hast du aber genau das richitge Ergebnis raus. Zur Rechnung:
Der Laplacsche Entwicklungssatz lautet wie folgt [mm] $\det [/mm] A = [mm] \sum_{j=1}^n (-1)^{i+j} a_{ij} \det(A_{ij})$. [/mm] Dabei bezeichnet [mm] $A_{ij}$ [/mm] die Matrix die durch Streichen der i-ten und j-ten Zeile entsteht. Du kannst sowohl nach eine Zeile als auch nach einer Spalte entwickeln. Sinnvollerweis esollte man dabei sich genau so eine Zeile/SPalte suchen, in der möglichst viele Nullen stehen, um den Rechenaufwand so gering wie möglich zu halten. Für dein Beispiel zeige ich mal den Anfang mit Entwicklung nach der 2. Spalte.
[mm] $\det \pmat{120&1&-\frac{1}{1000}&400\\ 80&\frac{1}{2}&\frac{1}{1000}&200\\ 40&\frac{1}{2}&-\frac{2}{1000}&0 \\20&0&-\frac{1}{1000}&100} [/mm] = [mm] (-1)^{1+2} \cdot [/mm] 1 [mm] \cdot \det \pmat{80&\frac{1}{1000}&200 \\ 40&-\frac{2}{1000}&0 \\20&-\frac{1}{1000}&100} [/mm] + [mm] (-1)^{2+2} \cdot \frac{1}{2} \cdot \det \ldots [/mm] $
Hoffe mal, daß du das Schema jetzt durchschaut hast.
Bei deiner zweiten Matrix gehst du analog vor. Da hier keine Null vorhanden ist, ist es egal wonach du entwickelst, der Rechenaufwand ist derselbe.
Gruß
Markus
|
|
|
|
|
Habs heute mal kurz in der Uni durchgerechnet:
[mm] x³\cdot{}(-1)^{1+1} \vmat{ x³ & 3x² & x \\ 3x² & x & 1\\ x³ & 3x² & x } [/mm]
+
[mm] x^{4}\cdot{}(-1)^{1+2} \vmat{ x² & x & 3 \\ 3x² & x & 1\\ x³ & x² & x }
[/mm]
+
[mm] x^{3}\cdot{}(-1)^{1+3} \vmat{ x² & x & 3 \\ x³ & 3x² & x\\ x³ & x² & x }
[/mm]
+
[mm] 3x^{4}\cdot{}(-1)^{1+4} \vmat{ x² & x & 3 \\ x³ & 3x² & x\\ 3x² & x & 1 }
[/mm]
[mm] =x³*(-4x^{5}) [/mm] - [mm] x^{4}(4x^{4}) [/mm] + [mm] x³(-4x^{5}) [/mm] - [mm] 3x^{4}(-20x^{4})
[/mm]
[mm] =-12x^{8}+60x^{8}=48x^{8}
[/mm]
|
|
|
|
|
Hallo,
Ergebnis passt. Du hast lediglich einen Schreibfehler, nehme ich mal an:
$ [mm] x³\cdot{}(-1)^{1+1} \vmat{ x³ & 3x² & x \\ 3x² & x & 1\\ x³ & 3x² & x } [/mm] $
Die $3$ bei [mm] $3x^2$ [/mm] in der letzten Zeile ist zuviel.
Gruß
Markus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:37 Fr 12.05.2006 | Autor: | alexchill |
Jo stimmt. Danke für deine hilfreichen Antworten Markus. Weiter so :)
|
|
|
|