www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Determinanten" - Determinante für Variablenmatr
Determinante für Variablenmatr < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determinante für Variablenmatr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:35 Sa 10.01.2009
Autor: erisve

Aufgabe
Für a,b [mm] \in \IR [/mm] sei die Matrix M(a,b) = [mm] m_{ij} \in [/mm] Mat(n,n) gegeben durch
mij=  a   fall i=j
      b   falls [mm] i\not=j [/mm]

bestimmen die die determinante von M(a,b)  

hm ich weiß nicht so recht mit welchen verfahren ich da ran gehen soll

        
Bezug
Determinante für Variablenmatr: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 Sa 10.01.2009
Autor: schachuzipus

Hallo erisve,

> Für a,b [mm]\in \IR[/mm] sei die Matrix M(a,b) = [mm]m_{ij} \in[/mm] Mat(n,n)
> gegeben durch
>  mij=  a   fall i=j
>        b   falls [mm]i\not=j[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> bestimmen die die determinante von M(a,b)
> hm ich weiß nicht so recht mit welchen verfahren ich da ran
> gehen soll

Verschaffe dir erstmal einen Eindruck, wie die Biester konkret aussehen

Für $\red{n=2}$ sieht das so aus:

$det(A_{\red{2}})=\pmat{a&b\\b&a}$, also $det(A_{\red{2}})=a^2-b^2=(a-b)\cdot{}(a+b)=(a-b)^{\red{2}-1}\cdot{}(a+(\red{2}-1)}\cdot{}b)$

Für $\red{n=3}$

$A_{\red{3}}=\pmat{a&b&b\\b&a&b\\b&b&a}$, also mit Sarrus

$det(A_{\red{3}})=a^3-3ab^2+2b^3=(a-b)^{\red{3}-1}\cdot{}(a+(\red{3}-1)\cdot{}b)$

Für $\red{n=4}$ ist $A_{\red{4}}=\pmat{a&b&b&b\\b&a&b&b\\b&b&a&b\\b&b&b&a}$

Hier addiere jeweils das $(-1)$fache der letzten Spalte zu den ersten 3 Spalten

Das gibt $\pmat{a-b&0&0&b\\0&a-b&0&b\\0&0&a-b&b\\b-a&b-a&b-a&a}$

Hier nun jede der ersten 3 Zeilen auf die 4.Zeile addieren, das gibt


$\pmat{a-b&0&0&b\\0&a-b&0&b\\0&0&a-b&b\\0&0&0&a+3b}$

Dies ist nun eine $\triangle$-Matrix, die Determinante ist also das Produkt der Hauptdiagonaleinträge, also

$det(A_{\red{4}})=(a-b)^3\cdot{}(a+3b)=(a-b)^{\red{4}-1}\cdot{}(a+(\red{4}-1)\cdot{}b)$

Es hat also den starken Anschein, dass die Determinante für allg. n, also $det(A_{\red{n}})=(a-b)^{\red{n}-1}\cdot{}(a+(\red{n}-1)\cdot{}b)$ ist

Versuche, damit eine Induktion ...

LG

schachuzipus



Bezug
                
Bezug
Determinante für Variablenmatr: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 01:02 So 11.01.2009
Autor: erisve

vielen dank,
ja ich kam mit der 4kreuz4 matrix nicht weiter, aber die schritte konnte ich nun alle nachvollziehen und nach der berechnung der 4X4Determinatne kann man ja auch gut auf die induktionsformel schließen,
nun hab ich mal die matrix für den induktionsschluss aufgestellt die ja zusätzlich zu der nxn-Matrix noch eine weter zeile und spalte enthält mit lauter bs außer gannz hinten wo dann ein a ist, wenn ich es schaffen würde diese untere zele zu 0 zu machen (bis auf das a hinten)könnte ich ja D10 (also das wo man die matrix in 4 teile teilt und nur die beiden Determinanten der oberen linken und unteren rechten berechnen und malnehmen muss) nur wie krieg ich dort unten links nullen hin?

Bezug
                        
Bezug
Determinante für Variablenmatr: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:50 So 11.01.2009
Autor: angela.h.b.


>  nun hab ich mal die matrix für den induktionsschluss
> aufgestellt die ja zusätzlich zu der nxn-Matrix noch eine
> weter zeile und spalte enthält mit lauter bs außer gannz
> hinten wo dann ein a ist, wenn ich es schaffen würde diese
> untere zele zu 0 zu machen (bis auf das a hinten)k

Hallo,

wie wäre es, wenn Du statt dieser Erzählung (oder besser noch: zusätzlich) mal die Matrix, über die Du redest, posten würdest.

> önnte ich
> ja D10 (also das wo man die matrix in 4 teile teilt

??? Auch hier wäre für solche wie mich hilfreich, wenn Du mal zeigen würdest, was Du meinst.

Ich kann mir unter dem D10  nichts vorstellen.

Gruß v. Angela

> und nur
> die beiden Determinanten der oberen linken und unteren
> rechten berechnen und malnehmen muss) nur wie krieg ich
> dort unten links nullen hin?


Bezug
                                
Bezug
Determinante für Variablenmatr: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:44 So 11.01.2009
Autor: erisve

[mm] \pmat{ a & b & ... & b \\ b & a &...& b \\ b & b &... & a} [/mm]
das hier ist ja die matrix (soll n+1 sein, naja und die äußertste zeilen/spalte weg würde dann die induktionsannahme sein also der formel entsprechen, nun gibt es ja eine regel wo man die matrix in 4 zeile zeilt , wobei unter dem einen strich nur nullen stehen, dann muss man nur noch die determinanten von den matrizen oben links und unten rechts berechnen, nur wie krieg ich dort unten in derletzten zeile die bs zu 0?

Bezug
                        
Bezug
Determinante für Variablenmatr: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:20 Di 13.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]