Determinante Matrix 4x4 < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:49 Mo 31.03.2008 | Autor: | ebarni |
Hallo zusammen, für Matrizen bis Größe 3x3 kenne ich zur Berechnung der Determinante folgende Formel:
det [mm] \pmat{ a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} } [/mm] = [mm] a_{11}*a_{22}*a_{33} [/mm] + [mm] a_{12}*a_{23}*a_{31} [/mm] + [mm] a_{13}*a_{21}*a_{32} [/mm] - [mm] a_{13}*a_{22}*a_{31} [/mm] - [mm] a_{11}*a_{23}*a_{32} [/mm] - [mm] a_{12}*a_{21}*a_{33}
[/mm]
Gibt es eine solche Formel auch für 4x4-Matrizen?
Viele Grüße, Andreas
|
|
|
|
Guten Morgen
na ja "geben" tuts so eine Formel auch, man kann sie sich aus der Leibnitzschen Determinatentenformel herleiten. Allerdings hätte die Formel dann 24 Terme da ich ja über alle Permutation aus [mm] S_{4} [/mm] laufen muss und das sind $4!$ also 24 Stück.
Ich denke das entwickeln nach zeile oder Spalte einfacher ist. Man kann die Matrix durch Zeilentransformationen umformen(so ändert das hinzuaddieren eines vielfachen einer zeile zu einer anderen Zeile die determinante ja nich) um dann eine zeile bzw spalte mit vielen nullen zu haben und nach der entwickelt man dann.
Einen schönen tach noch
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:10 Mo 31.03.2008 | Autor: | ebarni |
Hallo und vielen Dank für die schnelle Antwort!
Gibt es vielleicht noch die Möglichkeit, dass ich die 4x4-Matrix in zwei 3x3-Matrizen umwandle und dann eine "einfachere" Berechnung der Determinante habe?
> Ich denke das entwickeln nach zeile oder Spalte einfacher
> ist. Man kann die Matrix durch Zeilentransformationen
> umformen(so ändert das hinzuaddieren eines vielfachen einer
> zeile zu einer anderen Zeile die determinante ja nich) um
> dann eine zeile bzw spalte mit vielen nullen zu haben und
> nach der entwickelt man dann.
Diesen Algorithmus kenne ich zur Lösung des Gleichungssystems. Jetzt fehlt mir noch der Zusammenhang zur Determinante.
Viele Grüße, Andreas
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:40 Mo 31.03.2008 | Autor: | ebarni |
Liebe Bastiane, vielen lieben Dank für Dein schönes Beispiel, das hat mir sehr weitergeholfen.
Liebe Grüße, Andreas
|
|
|
|