www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Determ.-nichtrichtige Ergebnis
Determ.-nichtrichtige Ergebnis < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Determ.-nichtrichtige Ergebnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Sa 01.09.2012
Autor: betina

Aufgabe
Soll folgende Matrix lösen. Die Berechnung  soll durch selbst gebildete Nullen vereinfacht werden. [mm] \pmat{ -3 & 2 & 2 & -5\\ 2 & -4 & 2 & -1\\ 1 & -2 & 3 & -3\\ 1 & -3 & 2 & 2} [/mm]


Hallo Leute
ich komme leider nicht auf das richtige Ergebnis 66. Mein Ziel ist es ja möglichst viele Nullen in einer Zeile oder Spalte zu bilden.
Es wird höchstwahrscheinlich noch einfachere Wege geben, mir gehts nur darum ob bei meiner Rechenweise Fehler sind.

Ich will es in einer Spalte haben
Hab jetzt als erstes die 2. Zeile minus die 1. Zeile gerechnet:
2 - (-3) = 5
-4 - 2 = -6
2 - 2 =   0
-1 - (-5) = 4

[mm] \pmat{ -3 & 2 & 2 & -5\\ 5 & -6 & 0 & 4 \\ 1 & -2 & 3 & -3\\ 1 & -3 & 2 & 2} [/mm]

Jetzt habe ich um eine weitere Null unter der jetzigen Null zu bekommen, die 3. Zeile mit 2 multip. und dass minus der 4. Zeile * 3
Also [mm] Z_{3} [/mm] * 2 - [mm] Z_{4} [/mm] * 3
1 * 2 - 1 * 3 = -1
-2 * 2 - (-3) * 3 = 5
3 * 2 - 2 * 3 = 0
-3 * 2 - 2 * (-3) = 12

[mm] \pmat{ -3 & 2 & 2 & -5\\ 5 & -6 &[red]0[/red]& 4 \\ -1 & 5 &[red]0[/red]& -12\\ 1 & -3 & 2 & 2} [/mm]

Bevor ich jetzt hier noch die letzte Null bilden will wollte ich euch erstmal bis hier hin fragen ob das bis jetzt so richtig ist

        
Bezug
Determ.-nichtrichtige Ergebnis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Sa 01.09.2012
Autor: Steffi21

Hallo, bis hier ok

[mm] \pmat{ -3 & 2 & 2 & -5\\ 5 & -6 & 0 & 4 \\ -1 & 5 & 0 & -12 \\ 1 & -3 & 2 & 2} [/mm]

bilde jetzt eine neue 4. Zeile: Zeile eins minus Zeile vier

Steffi

Bezug
                
Bezug
Determ.-nichtrichtige Ergebnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:03 Sa 01.09.2012
Autor: betina

Alles klar! Das würde dann folgendes bedeuten

Zeile 4 minus Zeile 1
1 - 3 = -4
-3 - 2 = -5
2 - 2 = 0 !!
2 - (-5) = 7

Müsste doch dann so aussehen
[mm] \pmat{ -3 & 2 & 2 & -5\\ 5 & -6 & 0 & 4 \\ -1 & 5 & 0& -12\\ -4 & -5 & 0 & 7} [/mm]


Eigendlich hätte ich doch auch (wahrscheinlich so wie du mir vorgeschlagen hast) die 1.Zeile minus die 4. Zeile rechnen können


[mm] \pmat{ 4 & -5 & 0 & 7\\ 5 & -6 & 0 & 4 \\ -1 & 5 & 0& -12\\ 1& -3 & 2 & 2} [/mm]

Wie gehts jetzt weiter?

Bezug
                        
Bezug
Determ.-nichtrichtige Ergebnis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 Sa 01.09.2012
Autor: ralpho

Jetzt versuchst du einfach weitere Nullen zu erzeugen.
Indem du eine der Zeilen bei der die 3te Spalte 0 ist bei den anderen zeilen abziehst und dabei mit einem Faktor Multiplizierst um in einer weiteren Spalte 0 zu erzeugen. Zum Beispiel die 1. Zeile durch 7 mal 4 nimmst. Dann hast du in der letzten Spalte eine 4, diese Zeile ziehst du dann bei der zweiten Zeile ab. Dann hast du in der zweiten Zeile auch in der letzten Spalte 0. Und so gehst du weiter vor.

lg

Bezug
                                
Bezug
Determ.-nichtrichtige Ergebnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:02 Sa 01.09.2012
Autor: betina

Aber ich könnte doch jetzt auch nach dem ich das mit den beiden Nullen gebildet habe
[mm] \pmat{ -3 & 2 & 2 & -5\\ 5 & -6 & 0 & 4 \\ -1 & 5 & 0& -12\\ -4 & -5 & 0 & 7} [/mm]

folgendes tun:

2 * [mm] \pmat{ 5 & -6 & 4 \\ -1 & 5 & -12\\ -4 & -5 & 7} [/mm]

Kann ich auch so vorgehen??



Bezug
                                        
Bezug
Determ.-nichtrichtige Ergebnis: Antwort
Status: (Antwort) fertig Status 
Datum: 00:29 So 02.09.2012
Autor: wieschoo

Du möchtest die Deteminante berechnen?
Natürlich kannst du nach dieser 4. Spalte entwickeln. Es gibt da keinen goldenen Weg.

Du musst nur ab und zu mit dem Vorzeichen aufpassen.

Bezug
                                                
Bezug
Determ.-nichtrichtige Ergebnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:57 So 02.09.2012
Autor: betina

Du redest jetzt von Vorzeichenfehler .. Ich finde da jetzt leider keine. Wo sind die denn ?
Anscheinend hat die steffi21 hat dann auch die Vorzeichenfehler übersehen, denn sie hat geschrieben bis hier hin ok

Wenn du mir bitte sagst wo meine Vorzeichenfehler sind ist ja schonmal Hoffnung dass ich dann vielleicht doch aufs richtige Ergebnis komme

Bezug
                                                        
Bezug
Determ.-nichtrichtige Ergebnis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 So 02.09.2012
Autor: angela.h.b.


> Du redest jetzt von Vorzeichenfehler .. Ich finde da jetzt
> leider keine. Wo sind die denn ?
>  Anscheinend hat die steffi21 hat dann auch die
> Vorzeichenfehler übersehen, denn sie hat geschrieben bis
> hier hin ok
>  
> Wenn du mir bitte sagst wo meine Vorzeichenfehler sind ist
> ja schonmal Hoffnung dass ich dann vielleicht doch aufs
> richtige Ergebnis komme

Hallo,

einen Fehler hatte ich entdeckt und angemerkt.

Etwas anderes: wie von Marcel bereits angemerkt, willst Du offenbar die Determinante einer Matrix berechnen. "Matrizen lösen" gibt's nämlich nicht.

Zum Berechnen der Determinante darfst Du Zeilenumformungen machen.
Du mußt aber bedenken: multiplizierst Du die umzuformende Zeile etwa mit 5, so multipliziert sich auch die Determinante dieser Matrix mit 5.
Um dies auszugleichen, mußt Du "vorme" mit 1/5 multiplizieren.
Ich weiß, daß ich mich völlig unverständlich ausgedrückt habe, daher mache ich's mal an einem Beispiel vor:

berechnet werden soll [mm] det\pmat{1&2\\3&4}. [/mm]

Wenn ich jetzt die 1.Zeile mit 3 multipliziere und die untere subtrahiere, bekomme ich [mm] \pmat{0&2\\3&4}. [/mm]
Für die Berechnung der Determinante muß ich diese Multiplikation ausgleichen: [mm] det\pmat{1&2\\3&4}=1/3*\pmat{0&2\\3&4}. [/mm]

Dies mußt Du bei Deiner Berechnung berücksichtigen!

LG Angela


Bezug
                                                        
Bezug
Determ.-nichtrichtige Ergebnis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:17 So 02.09.2012
Autor: wieschoo


> Du redest jetzt von Vorzeichenfehler .. Ich finde da jetzt
> leider keine. Wo sind die denn ?

Ich habe nicht ein einziges Mal erwähnt, dass du ein Vorzeichenfehler hast. Bei der Entwicklung nach der j-ten Spalte muss man ggf. auch noch -1 multiplizieren. Ich hatte lediglich geschrieben, dass du da aufpassen solltest.

Bezug
                        
Bezug
Determ.-nichtrichtige Ergebnis: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 So 02.09.2012
Autor: angela.h.b.


> Alles klar! Das würde dann folgendes bedeuten
>  
> Zeile 4 minus Zeile 1
>  1 - 3 = -4
> -3 - 2 = -5
>  2 - 2 = 0 !!
>  2 - (-5) = 7
>  
> Müsste doch dann so aussehen
>  [mm]\pmat{ -3 & 2 & 2 & -5\\ 5 & -6 & 0 & 4 \\ -1 & 5 & 0& -12\\ -4 & -5 & 0 & 7}[/mm]
>  

Hallo,

rechne die letzte Zeile nochmal nach.

LG Angela


Bezug
                                
Bezug
Determ.-nichtrichtige Ergebnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:25 So 02.09.2012
Autor: betina

Sehr gut angela dass du es ansprichst!!! Denn ich hatte schon die vermutung gehabt dass ich hauptsäclich alles richtig gemacht habe bis auf einen letzten schritt der mich dazubringt dass doch ein falsches ergebnis rauskommt.

Also diesen einen Vorzeichenfehler bei der -4 habe ich hier korrigiert

Jetzt sieht es aber richtig aus
[mm] \pmat{ 5 & -6 & 4\\ -1 & 5 & -12 \\ 4 & -5 & 7} [/mm]

Wenn ich  jetzt genau das in den Determinanterechner eingebe kommt die gewünscht 61 raus..

Aber jetzt müsste ich doch noch dies mit 2 multiplizieren denn es war ja schließlich so

[mm] \pmat{ -3 & 2 & 2 & -5\\ 5 & -6 & 0 & 4 \\ -1 & 5 & 0& -12\\4 & -5 & 0 & 7} [/mm]

und wenn ich das dan mache kommt schließlich das doppelte Ergebnis raus als es sein soll...

Dein Beispiel konnte ich nachvollziehen wie man es wieder ausgleichen kann

Jetzt hab ich ja bei meiner Berechnung hier viel herum multipliziert (z.B. nicht nur mit 3 wie in deinem Beispiel).
Könntest du mir für meine Berechnung dazu einen rechnerichen ansatz geben wie ich das hier zu machen habe


Vielen Dank schon mal bis hier her!!!

Bezug
                                        
Bezug
Determ.-nichtrichtige Ergebnis: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 So 02.09.2012
Autor: reverend

Hallo betina,

ja, das ist ein Problem bei der Berechnung von Determinanten.
Das Gaußverfahren, das Du zur Lösung von LGS gelernt hast, versagt hier.
Betrachte mal folgenden Schritt:

> 3. Zeile mal 2 minus 4. Zeile mal 3

Das hast Du in Deinem ersten Post angewandt.
Ich bezeichne die Zeilen mal mit römischen Ziffern, also III=3. Zeile, IV=4. Zeile.

Du hättest ja auch rechnen können: [mm] III-IV*\tfrac{3}{2} [/mm] und die "neue" Zeile wäre nur halb so groß gewesen, die Determinante richtig.
Oder Du hättest III*6-IV*9 rechnen können und hättest auch eine Null an der richtigen Stelle gehabt, nur wäre Deine Determinante sechsmal so groß gewesen wie die richtige.

Ähnliches gilt für die letzte Zeile. Da macht es einen Unterschied, ob Du IV-I rechnest oder I-IV. Die jeweilige Determinante wechselt dazwischen nämlich das Vorzeichen.

Als Faustregel solltest Du Dir daher Folgendes merken.
1) Jede Zeile bleibt da stehen, wo sie am Anfang war.
genauer: wenn Zeilen vertauscht oder verschoben werden, muss die Zeilenpermutation gerade sein. Am einfachsten also - alles so lassen.
2) Sie wird auch mit nichts multipliziert (sprich: immer nur mit der 1), aber es dürfen beliebige Vielfache anderer Zeilen dazuaddiert oder davon abgezogen werden.
3) Das gilt für jeden weiteren Rechenschritt, also auch für veränderte Zeilen.
Dann nämlich bleibt die Determinante der veränderten Matrix immer gleich.

Dieses "normierte" Gaußverfahren funktioniert zuverlässig.

Der "Fehler" lag hier also nur darin, dass Du die III.Zeile mit 2 multipliziert hast, darum ist Deine Determinante zweimal so groß wie sie sein sollte.

Grüße
reverend


Bezug
                                                
Bezug
Determ.-nichtrichtige Ergebnis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:22 So 02.09.2012
Autor: betina

Vielen Dank für eure große Geduld und eure Hilfe!! Ich werde mich jetzt an diese Faustregeln halten und werde übungsaufgaben dazumachen..

*Zur Probe ob ich jetzt diese Faustregeln anwenden um dann aufs richtige ergebnis zu kommen*


Falls was ist melde ich mich wieder bei euch
Danke für eure Hilfe  :-)


Bezug
        
Bezug
Determ.-nichtrichtige Ergebnis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:32 So 02.09.2012
Autor: Marcel

Hallo,

> Soll folgende Matrix lösen.

mal rein prophylaktisch, falls Du mal in einer Prüfung sowas sagst:
Was soll das denn heißen "Eine Matrix lösen"? Du willst sicher ein
durch die Matrix beschriebenes Gleichungssystem lösen, oder?

Der Überschrift entnimmt, man, dass Du die Determinante der gegebenen
Matrix berechnen willst?!


> $ [mm] \pmat{ -3 & 2 & 2 & -5\\ 5 & -6 &[red]0[/red]& 4 \\ -1 & 5 &[red]0[/red]& -12\\ 1 & -3 & 2 & 2} [/mm] $

Tipp: In einer Formel kannst Du etwa etwas in Rot so markieren:
[mm] $\red{x}+7=0$ [/mm]
[mm] [nomm]$\red{x}+7=0$[/nomm] [/mm]

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]