www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Det einer Blockmatrix
Det einer Blockmatrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Det einer Blockmatrix: Beweis ausreichend?
Status: (Frage) beantwortet Status 
Datum: 16:25 Fr 01.04.2005
Autor: Sonja

Zu folgender Aufgabe habe ich eine Frage:

Sei A eine [mm](k,k)[/mm]-Matrix, D eine [mm](n-k,n-k)[/mm]-Matrix und
[mm] \begin{vmatrix} A & B \\ C & D \end{vmatrix} [/mm]
eine [mm](n,n)[/mm]-Blockmatrix. Zeige:
Ist P eine [mm](k,n-k)[/mm]- und Q eine [mm](n-k,k)[/mm]-Matrix, so ist
[mm] \begin{vmatrix} A & B \\ C & D \end{vmatrix} = \begin{vmatrix} A & B - AP \\ C & D - CP \end{vmatrix} = \begin{vmatrix} A-BQ & B \\ C-DQ & D \end{vmatrix} .[/mm]

Mein Ansatz:
Es ist [mm]A*P = (A*\vec p_1 , A*\vec p_2 , ... , A* \vec p_(n-k) ) [/mm], und [mm]A*\vec p_x = p_1*\vec a_1 + ... + p_k*\vec a_k[/mm] . Somit ist [mm]B-AP[/mm] eine Typ-3 Umformung, und diese ändern den Wert der Determinante nicht.
Ist diese Begründung als Beweis denn ausreichend??? Immerhin gibt es 6 von 48 Punkten für diese Aufgabe.

Vielen Dank für eure Hilfe und noch einen sonnigen Nachmittag (und sorry für das grausige Lay-out)
Sonja
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt

        
Bezug
Det einer Blockmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Mo 04.04.2005
Autor: Julius

Hallo!

Ja, die Begründung ist richtig, auch wenn ich mit deiner Notation nicht ganz zurechtkomme. [verwirrt]

Die $j$-te Spalte der neuen Matrix ist gerade, wenn ich mit [mm] $b^j$ [/mm] die $j$-te Spalte der Matrix $B$ und mit [mm] $a^j$ [/mm] die $j$-te Spalte der Matrix $A$ bezeichne:

[mm] $b^j-\sum\limits_{l=1}^k p_{lj} \cdot a^j$. [/mm]

In der Tat ist also die $j$-te Spalte nur eine Linearkombination der Spalten der Ursprungsmatrix. Daher wird die Determinante nicht verändert.

Die zweite Aufgabe geht vollkommen analog. :-)

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]