Derive Beispiel < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:53 Mo 25.09.2006 | Autor: | wayfarer |
Aufgabe | Der Graph einer Polynomfunktion 4.grades besitzt den tiefpunkt T(0/0),den Wendepunkt W (1/1) mit zur x-Achse parallelen Tangente.
Wie lautet der Funktionsterm?
Diskutiere die Funktion und stelle die Gleichung der Wendetangente auf.
Graphische Darstellung! |
Bitte hilfts mir....ich brauche echt Hilfe bin am Verzweifeln...für euch ist das sicherlich ein Klacks!
Bitte auch wenn möglich um kurze erklräeungen wieso!
Wäre echt SEHR SUPER!
BITTE!!!
Danke
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:09 Mo 25.09.2006 | Autor: | Teufel |
Hallo auch!
Das gehört aber nicht in das Derive-Forum :) naja egal jetzt.
ich habe es in das Forum Steckbriefaufgaben verschoben, M.Rex
Funktion 4. Grades heißt:
[mm] f(x)=ax^{4}+bx³+cx²+dx+e
[/mm]
so sieht die Funktion schlimmstenfalls aus.
Aus T(0|0) kriegst du 2 Informationen:
Der Punkt T(0|0) liegt auf dem Grafen.
f(0)=0
Und an der Stelle x=0 ist die 1. Ableitung von f 0, da hier ein Extrempunkt vorliegt.
f'(0)=0
Aus W(1|1) siehst du:
W(1|1) liegt auf dem Grafen.
f(1)=1
Und bei einem Wendepunkt muss die 2. Ableitung ja 0 sein.
Und da der Wendepunkt bei x=1 ist, muss die 2. Ableitung an der Stelle 1 gleich 0 sein.
f''(1)=0
Und da die Tangente (=der Anstieg) an der Stelle x=1 waagerecht ist (=Steigung 0) muss die 1. Ableitung an der Stelle 1 auch 0 sein.
f'(1)=0.
Damit hättets du 5 Gleichungen, wenn du jeweils wieder die Funktionen einsetzt!
Muss halt nur das Gleichungssystem mit 5 Variablen lösen können (wobei e gleich am Anfang bei f(0)=0 wegfallen sollte, und d fällt bei f'(0)=0 weg!)
Also ist es eigentlich nur ein Gleichungssystem mit 3 Variablen.
[mm] f(1)=1=a*1^{4}+b*1³+c*1²
[/mm]
f'(1)=0=4a*1³+3b*1²+c*1
f''(1)=0=12a*1²+6b*1+c
Wenn es nur einen Wendepunkt geben sollte (den bei W(1|1)) dann sollte das recht einfach sein. Da die Tangente an der Stelle parallel zur x-Achse ist (also Steigung 0 hat), kann die tangentengleichung nur die Form f(x)=c haben. Und da sie durch den Punkt W(1|1) geht also f(x)=y=1.
|
|
|
|