www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Definitionsbereich + Grenzwert
Definitionsbereich + Grenzwert < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionsbereich + Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Di 25.04.2006
Autor: Sherin

Aufgabe
Stellen Sie für die folgenden Funktionen den Definitionsbereich  [mm] \nu [/mm] auf. Untersuchen Sie daraufhin für jede Funktion die drei Grenzwerte
[mm] \limes_{x\rightarrow 0} [/mm] ( [mm] \limes_{y\rightarrow 0} [/mm] f (x,y))
[mm] \limes_{y\rightarrow 0} [/mm] ( [mm] \limes_{x\rightarrow 0} [/mm] f (x,y))
[mm] \limes_{z\rightarrow 0} [/mm] f(z)   ((x,y [mm] \in \nu). [/mm]

(a) f (x,y) =  [mm] \bruch{x-y}{x+y} [/mm]
(b) f (x,y) =  [mm] \bruch{x²y²}{x²y²+(x-y)²} [/mm]
(c) f (x,y) = (x+y) sin ( [mm] \bruch{1}{x}) [/mm] sin ( [mm] \bruch{1}{y}) [/mm]

Hallo ihr Lieben!
Bei diesem Thema hinke ich irgendwie total hinterher und verstehe absolut gar nichts!! Daher verstehe ich auch net, wie ich diese aufgabe anfangen soll!

Wäre euch echt dankbar, wenn ich mir das kurz erklären könntet!

Vielen Dank im Voraus!

Lg, Sherin

        
Bezug
Definitionsbereich + Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 09:35 Mi 26.04.2006
Autor: MatthiasKr

Hallo sherin,

vielleicht einmal ein Tip zur ersten Aufgabe

> (a) f (x,y) =  [mm]\bruch{x-y}{x+y}[/mm]

Wie sieht der definitonsbereich aus? der nenner darf nicht $0$ werden, also ist f für $x=y=0$ nicht definiert....
Halte jetzt zunächst x fest und gehe mit y gegen 0. Was erhältst du da als grenzwert (x kann als ungleich 0 angenommen werden)? dann erst gehts du mit x gegen 0.
Dann das gleiche umgekehrt: y festhalten und mit x gegen 0 gehen, anschließend mit y. tip:die grenzwerte unterscheiden sich.

beim letzten teil verstehe ich nicht so ganz, was mit $z$ gemeint ist.

VG
Matthias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]