www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Definitionsbereich
Definitionsbereich < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionsbereich: Tipp/Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:23 Mo 13.02.2012
Autor: al3pou

Aufgabe
Der größtmögliche Definitionsbereich von f : D [mm] \subset \IR \to \IR [/mm] mit
f(x) = [mm] \bruch{1}{sin(\pi x)} [/mm] lautet D = ? (Ergebnisse in
korrekter Notation!)

Hallo,

also ich weiß das der Sinus nicht 0 werden darf. Der sin(x)= 0
für x [mm] \in [0,\pi [/mm] ] + [mm] 2k\pi [/mm] . Also darf x in der Funktion keine
ganze Zahl annehmen oder irre ich mich? Also wäre doch der
Definitionsbereich  D = [mm] \IR [/mm] \ [mm] \IZ [/mm]
Und Null darf x auch nicht annehmen. Wie würde ich das denn
schreiben und ist diese Überlegung überhaupt richtig?

Gruß
al3pou

        
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 Mo 13.02.2012
Autor: abakus


> Der größtmögliche Definitionsbereich von f : D [mm]\subset \IR \to \IR[/mm]
> mit
> f(x) = [mm]\bruch{1}{sin(\pi x)}[/mm] lautet D = ? (Ergebnisse in
> korrekter Notation!)
>  Hallo,
>  
> also ich weiß das der Sinus nicht 0 werden darf. Der
> sin(x)= 0
> für x [mm]\in [0,\pi[/mm] ] + [mm]2k\pi[/mm] .

Kürzer: [mm] $x=k*\pi$. [/mm]

> Also darf x in der Funktion
> keine
> ganze Zahl annehmen oder irre ich mich?

Du irrst dich nicht.

> Also wäre doch der
> Definitionsbereich  D = [mm]\IR[/mm] \ [mm]\IZ[/mm]
>  Und Null darf x auch nicht annehmen.

Da auch Null eine ganze Zahl ist, genügt die vorherige Überlegung ;-)
Gruß Abakus

> Wie würde ich das
> denn
> schreiben und ist diese Überlegung überhaupt richtig?
>  
> Gruß
>  al3pou


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]