www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Definitionsbereich
Definitionsbereich < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 Fr 30.01.2009
Autor: Englein89

Hallo,

ich habe die Funktion

[mm] f(x,y)=x^2+y^2-2ln(xy) [/mm]

Und ich soll nun den Definitionsbereich bestimmen, diese ist ja x>0 und y>0

Die Lösung schreibtr aber

[mm] D_f={(x,y) \in R^2:x>0 und y>0} \cup [/mm] {x,y) [mm] \in R^2:x<0 [/mm] und y<0}

Ich verstehe einfach diese Schreibweise mit x,y) [mm] \cup [/mm] nicht. Kann mir die Schreibweise jemand erläutern bitte?

Danke!

        
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Fr 30.01.2009
Autor: M.Rex

Hallo

Die Einschränkung kommt ja durch den [mm] \ln [/mm] , der nur für positive Argumente definiert ist.

Und x*y ist grösser als Null, wenn x und y beide grösser oder beide kleiner als Null sind.

Und diese Wertepaare (x,y) werden nun als Elemente aus dem [mm] \IR^{2} [/mm] behandelt.
So entsteht diese Schreibweise des Def-Bereiches.

Marius

Bezug
                
Bezug
Definitionsbereich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 Fr 30.01.2009
Autor: Englein89

Aber [mm] \cup [/mm] steht doch nicht für "oder", oder?

Bezug
                        
Bezug
Definitionsbereich: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Fr 30.01.2009
Autor: schachuzipus

Hallo Englein,

das [mm] $\cup$ [/mm] steht für "Vereinigung".

In deinem ersten post ist es schlecht lesbar

[mm] $D=\{(x,y)\in\IR^2 \ : \ x>0\wedge y>0\} [/mm] \ [mm] \cup [/mm] \ [mm] \{(x,y)\in\IR^2 \ : \ x<0\wedge y<0\}$ [/mm]

Der Definitionsbereich ist also die Vereinigung zweier Teilmengen des [mm] $\IR^2$, [/mm] wobei die erste Teilmenge den 1.Quadranten und die zweite Teimenge den 3.Quadranten beschreibt (jeweils ohne die Achsen)

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]