www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Definition Verständnis
Definition Verständnis < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition Verständnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:34 Mi 02.05.2018
Autor: Mandy_90

Aufgabe
Definition (Gruppenwirkung):
Sei X [mm] \not= \emptyset [/mm] eine Menge. Eine Wirkung von G auf X ist eine Abbildung X x G [mm] \to [/mm] X, (x,g) [mm] \mapsto x^{g}, [/mm] die folgende Bedingungen erfüllt.
i. Für alle x [mm] \in [/mm] X gilt: [mm] x^{1}=x. [/mm]
ii. Für alle x [mm] \in [/mm] X, g,h [mm] \in [/mm] G gilt: [mm] (x^{g})^{h}=x^{gh}. [/mm]
Wir nennen X auch einen G-Raum.


Hallo Leute,

ich verstehe diese Definition nicht so ganz. Was ist das [mm] x^{1} [/mm] ? Und was ist [mm] (x^{g})^{h} [/mm] ? Ist [mm] (x^{g})^{h}=h(g(x)) [/mm] ? Aber g,h sind doch Elemente der Gruppe G und nicht Funktionen oder ? Ich komme grad durcheinander.

lg
Mandy_90

        
Bezug
Definition Verständnis: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Mi 02.05.2018
Autor: fred97


> Definition (Gruppenwirkung):
>  Sei X [mm]\not= \emptyset[/mm] eine Menge. Eine Wirkung von G auf X
> ist eine Abbildung X x G [mm]\to[/mm] X, (x,g) [mm]\mapsto x^{g},[/mm] die
> folgende Bedingungen erfüllt.
> i. Für alle x [mm]\in[/mm] X gilt: [mm]x^{1}=x.[/mm]
>  ii. Für alle x [mm]\in[/mm] X, g,h [mm]\in[/mm] G gilt:
> [mm](x^{g})^{h}=x^{gh}.[/mm]
>  Wir nennen X auch einen G-Raum.
>  Hallo Leute,
>  
> ich verstehe diese Definition nicht so ganz. Was ist das
> [mm]x^{1}[/mm] ? Und was ist [mm](x^{g})^{h}[/mm] ? Ist [mm](x^{g})^{h}=h(g(x))[/mm] ?
> Aber g,h sind doch Elemente der Gruppe G und nicht
> Funktionen oder ? Ich komme grad durcheinander.

Nennen wir die Abbildung, die Wirkung,  von X x G [mm] \to [/mm] X einfach mal f.

Für x [mm] \in [/mm] X und g [mm] \in [/mm] G ist [mm] x^g [/mm] einfach eine Abkürzung für f(x,g).

Mehr steckt nicht dahinter. Mit 1 ist das neutrale Element (Einselement) in G gemeint.

>  
> lg
>  Mandy_90


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]