www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Definition Riemann-Integral,
Definition Riemann-Integral, < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Definition Riemann-Integral,: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:17 Mo 26.01.2015
Autor: sissile

Aufgabe
Im Forster wird zuerst das Integral für Treppenfunktionen [mm] \tau[a,b] [/mm] definiert:
Sei [mm] \phi \in \tau[a,b] [/mm] definiert bezüglich der Unterteilung [mm] a=x_0 [mm] \int_a^b \phi(x) [/mm] dx := [mm] \sum_{k=1}^n c_k (x_k -x_{k-1}). [/mm]

Es wir dann anschließend die Wohldefiniertheit der  Definition gezeigt (Unabhängigkeit der Zerlegung) und dannach wir die Riemann-integrierbarkeit durch die Gleichheit des Ober- und Unterintegrals für beschränkte funktionen f:[a,b] [mm] \rightarrow \mathbb{R} [/mm] definiert.:
$ [mm] \int_a^b^{\*} [/mm] $ f(x) dx := inf $ [mm] \{\int_a^b \psi(x) dx : \spi \in \tau[a,b], f \le \psi\} [/mm] $
$ [mm] \int_a^b_{\*} [/mm] $ f(x) dx := sup $ [mm] \{\int_a^b \phi(x) dx : \spi \in \tau[a,b], \phi \le f\} [/mm] $

Ist das nun, dasselbe wie die Darbouxschen Integrale?
Hier wird z.B. im Heuser das untere und obere Darbouxsche Integral eingeführt:
Sei f eine beschränkte Funktion auf [a,b] sowie [mm] Z:=\{x_0,..,x_n\} [/mm] irgendeine Zerlegung von [a,b] mit den Teilintervallen [mm] I_k:=[x_{k-1},x_k]. [/mm] Mit den Zahlen [mm] m_k:= [/mm] inf [mm] f(I_k), M_k:= [/mm] sup [mm] f(I_k) [/mm] bilde man nun die Ober- und Untersumme
[mm] U(f,Z):=\sum_{k=1}^n m_k |I_k| [/mm] bzw. [mm] O(f,Z):=\sum_{k=1}^n M_k |I_k|. [/mm]
Nennen wir
[mm] \int_a^b_{\*} [/mm] := [mm] sup_{Z} [/mm] U(Z) das untere,
[mm] \int_a^b^{\*}:= inf_{Z} [/mm] O(Z) das obere Darbouxsche Integral von f auf [a,b]

Hallo,
Ich hoffe ich habe meine Frage klar ausgedrückt. Es herrscht etwas Verwirrung bezüglich des Themas.
LG,
sissi

        
Bezug
Definition Riemann-Integral,: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Mo 26.01.2015
Autor: fred97


> Im Forster wird zuerst das Integral für Treppenfunktionen
> [mm]\tau[a,b][/mm] definiert:
>  Sei [mm]\phi \in \tau[a,b][/mm] definiert bezüglich der
> Unterteilung [mm]a=x_0
> [mm]\phi|_{]x_{k-1},x_k[}=c_k[/mm] für k=1,..,n. Dann setzt man
>   [mm]\int_a^b \phi(x)[/mm] dx := [mm]\sum_{k=1}^n c_k (x_k -x_{k-1}).[/mm]
>  
> Es wir dann anschließend die Wohldefiniertheit der  
> Definition gezeigt (Unabhängigkeit der Zerlegung) und
> dannach wir die Riemann-integrierbarkeit durch die
> Gleichheit des Ober- und Unterintegrals für beschränkte
> funktionen f:[a,b] [mm]\rightarrow \mathbb{R}[/mm] definiert.:
>  [mm]\int_a^b^{\*}[/mm] f(x) dx := inf [mm]\{\int_a^b \psi(x) dx : \spi \in \tau[a,b], f \le \psi\}[/mm]
>  
> [mm]\int_a^b_{\*}[/mm] f(x) dx := sup [mm]\{\int_a^b \phi(x) dx : \spi \in \tau[a,b], \phi \le f\}[/mm]
>  
> Ist das nun, dasselbe wie die Darbouxschen Integrale?


Ja

FRED


>  Hier wird z.B. im Heuser das untere und obere Darbouxsche
> Integral eingeführt:
>  Sei f eine beschränkte Funktion auf [a,b] sowie
> [mm]Z:=\{x_0,..,x_n\}[/mm] irgendeine Zerlegung von [a,b] mit den
> Teilintervallen [mm]I_k:=[x_{k-1},x_k].[/mm] Mit den Zahlen [mm]m_k:=[/mm]
> inf [mm]f(I_k), M_k:=[/mm] sup [mm]f(I_k)[/mm] bilde man nun die Ober- und
> Untersumme
>  [mm]U(f,Z):=\sum_{k=1}^n m_k |I_k|[/mm] bzw. [mm]O(f,Z):=\sum_{k=1}^n M_k |I_k|.[/mm]
> Nennen wir
>  [mm]\int_a^b_{\*}[/mm] := [mm]sup_{Z}[/mm] U(Z) das untere,
>  [mm]\int_a^b^{\*}:= inf_{Z}[/mm] O(Z) das obere Darbouxsche
> Integral von f auf [a,b]
>  Hallo,
>  Ich hoffe ich habe meine Frage klar ausgedrückt. Es
> herrscht etwas Verwirrung bezüglich des Themas.
>  LG,
>  sissi


Bezug
                
Bezug
Definition Riemann-Integral,: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Mo 26.01.2015
Autor: sissile

Danke für die Antwort,
kannst du mir vlt. auch erklären wieso das dasselbe ist? Ich verstehe, dass nämlich noch nicht ganz.

LG,
sissi

Bezug
                        
Bezug
Definition Riemann-Integral,: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 Mo 26.01.2015
Autor: Gonozal_IX

Hiho,

> Danke für die Antwort,  kannst du mir vlt. auch erklären wieso das dasselbe ist?

zeige, dass die beiden Definitionen die selben Ober- bzw. Unterintegrale ergeben.

Mache dir dazu folgende zwei Dinge für [mm] $\psi [/mm] := [mm] \summe_{k=1}^n M_k*1_{I_k}$ [/mm] klar:

1.)  [mm] \psi [/mm] ist selbst wieder eine Treppenfunktion mit $f [mm] \le \psi$ [/mm]
Was folgt daraus als Relation zwischen den unterschiedlichen Oberintegraldefinitionen?

2.) Für jede Treppenfunktion [mm] \phi [/mm] bezüglich der Zerlegung von [a,b] in Teilintervalle [mm] I_k [/mm] mit $f [mm] \le \phi$ [/mm] gilt [mm] $\psi \le \phi$ [/mm]
Was folgt daraus als Relation zwischen den unterschiedlichen Oberintegraldefinitionen?

Also insgesamt?
Gruß,
Gono

Bezug
                                
Bezug
Definition Riemann-Integral,: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:12 Di 27.01.2015
Autor: sissile

Hallo,

1)
Sei [mm] \epsilon_i \in [x_{i-1},x_i]=I_i [/mm] ein beliebiges Element des Intervalls:
[mm] \psi(\epsilon_i):= (\sum_{k=1}^n M_k \cdot{}1_{I_k}) (\epsilon_i)=M_i=\sup (f(I_i)) [/mm]
[mm] \phi(\epsilon_i):=(\sum_{k=1}^n m_k \cdot{}1_{I_k}) (\epsilon_i)=m_i =\inf (f(I_i)) [/mm]
Das gilt für alle i [mm] \in \{1,..,n\} [/mm] und jeweils ein beliebiges Element des Intervalls, dementsprechend sind [mm] \psi, \phi [/mm] Treppenfunktionen auf [a,b].

[mm] \sup(f(I_i))\ge f(I_i) \forall [/mm] i [mm] \in \{1,..,n\} [/mm]
d.h. [mm] \psi \ge [/mm] f

[mm] \inf(f(I_i))\le f(I_i) \forall [/mm] i [mm] \in \{1,..,n\} [/mm]
d.h. [mm] \phi \le [/mm]  f

Daraus folgt [mm] O(f,Z)=\sum_{k=1}^n M_k (x_k-x_{k-1})=\sum_{k=1}^n \psi(\epsilon_k) (x_k-x_{k-1})=\int_a^b \psi(x) [/mm] dx [mm] \in [/mm] $ [mm] \{\int_a^b \psi(x) dx : \psi \in \tau[a,b], f \le \psi\} [/mm] $
[mm] U(f,Z)=\sum_{k=1}^n m_k (x_k-x_{k-1})= \int_a^b \phi(x) [/mm] dx [mm] \in [/mm]  $ [mm] \{\int_a^b \phi(x) dx : \phi \in \tau[a,b], \phi \le f\} [/mm] $

Das heißt
inf  [mm] \{\int_a^b \psi(x) dx : \psi \in \tau[a,b], f \le \psi\} \le [/mm] O(f,Z)
sup [mm] \{\int_a^b \phi(x) dx : \phi \in \tau[a,b], \phi \le f\} \ge [/mm] U(f,Z)

Da das für alle Zerlegungen gilt folgt
inf  [mm] \{\int_a^b \psi(x) dx : \psi \in \tau[a,b], f \le \psi\} \le [/mm] inf O(f,Z)
sup [mm] \{\int_a^b \phi(x) dx : \phi \in \tau[a,b], \phi \le f\} \ge [/mm] sup U(f,Z)

2)
Angenommen es würde eine Treppepenfunktion [mm] \overline{\psi} [/mm] mit der Eigenschaft [mm] f\le \overline{\psi} [/mm] und ein Zwischenwert [mm] \epsilon_i \in I_i [/mm] existieren mit [mm] \overline{\psi}(\epsilon_i) \le \psi(\epsilon_i). [/mm]
Dann folgt [mm] \overline{\psi}(\epsilon_i) \le sup(f(I_i)) [/mm]
Nach Def des Supremums [mm] \exists [/mm] Zwischenwert [mm] s_i \in I_i [/mm] : [mm] \overline{\psi}(\epsilon_i)\le f(s_i) [/mm]
Da [mm] \overline{\psi} [/mm] eine Treppenfunktion mit Zerteilung Z: [mm] \overline{\psi}(s_i)=\overline{\psi}(\epsilon_i)\le f(s_i) [/mm]
Was ein Widerspruch zu [mm] \overline{\psi} \ge [/mm] f ist.

D.h. wie du schreibst:
Für jede Treppenfunktion $ [mm] \kappa$ [/mm] bezüglich der Zerlegung von [a,b] in Teilintervalle $ [mm] I_k [/mm] $ mit $ f [mm] \le \kappa [/mm] $ gilt $ [mm] \psi \le \kappa [/mm] $

[mm] O(f,Z)=\int_a^b \psi \le \int_a^b \kappa [/mm]
O(f,Z) [mm] \le [/mm] inf [mm] \{\int_a^b \psi(x) dx : \psi \in \tau[a,b], f \le \psi\} [/mm]

Da das für alle Zerlegungen Z so gilt:
inf O(f,Z) [mm] \le [/mm] inf [mm] \{\int_a^b \psi(x) dx : \psi \in \tau[a,b], f \le \psi\} [/mm]

Für das Unterintegral analog

Aus 1&2
inf O(f,Z) = inf [mm] \{\int_a^b \psi(x) dx : \psi \in \tau[a,b], f \le \psi\} [/mm]
sup [mm] \{\int_a^b \phi(x) dx : \phi \in \tau[a,b], \phi \le f\} [/mm] = sup U(f,Z)


Bezug
                                        
Bezug
Definition Riemann-Integral,: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 29.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]