www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Dedekindscher Schnitt
Dedekindscher Schnitt < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dedekindscher Schnitt: Aufgabe
Status: (Frage) überfällig Status 
Datum: 19:44 So 11.11.2012
Autor: Andy_18

Aufgabe
Ein dedekindscher Schnitt ist ein paar von Mengen, A, [mm] B\subset\IR [/mm] mit den folgenden Eigenschaften.
A [mm] \ne [/mm] leere Menge [mm] \ne [/mm] B und A [mm] \{A,B\} [/mm] = IR
Für beliebiges [mm] a\in\A [/mm] und beliebiges [mm] b\in\B [/mm] gilt [mm] a\le [/mm] b

Zeigen Sie dass die vollständigkeit von IR äquivalent ist zu der Aussage:
Zu jedem dedekindschen Schnitt (A,B) gibt es ein [mm] s\in\IR [/mm] mit [mm] a\le s\le [/mm] b für alle [mm] a\in\A [/mm] und für alle [mm] b\in\B. [/mm]
(Hinweis: wählen sie in der Richtung '-->' ein geeignetes Intervall [mm] I_o [/mm] und definieren sie sich für [mm] n\in\IN [/mm] Intervalle [mm] I_n [/mm] rekursiv mit | [mm] I_n [/mm] | = [mm] \bruch{1}{2} [/mm] | [mm] I_n [/mm] |.)

Ich find gerade gar keinen Ansatz wie ich diese Aufgabe lösen könnte und ich muss sie morgen schon abgeben. Ich wäre sehr dankbar für eure Hilfe.

Gruß, Andy

Ich habe diese frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Dedekindscher Schnitt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Di 13.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]