www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Darstellungsmatrix v. Bil.Form
Darstellungsmatrix v. Bil.Form < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellungsmatrix v. Bil.Form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 So 31.05.2015
Autor: mathenoob3000

Aufgabe
Sei $ V:= [mm] \{p \in \mathbb{R}[x] | deg(p) \le 2\}$ [/mm] der R-Vektorraum der Polynome mit Koeffizienten in R und Grad [mm] $\le [/mm] 2$. Sei $s: V [mm] \times [/mm] V [mm] \rightarrow \mathbb{R}$ [/mm] die symmetrische Bilinearform definiert über die Vorschrift

$s(p,q) := p(-2) * q(-2).$

Finden Sie die Darstellungsmatrix von $s$ bezüglich der Basis [mm] $(1,x,x^2)$ [/mm] und führen Sie eine Hauptachsentransformation durch.
Geben Sie den Rang und den Ausartungsraum von $s$ an.


Hi

also als Darstellungsmatrix habe ich:

$A:= [mm] \begin{pmatrix} 4 & 4x & 4x^2 \\ 4x & 4x^2 & 4x^3 \\ 4x^2 & 4x^3 & 4x^4 \end{pmatrix}$ [/mm]

Wenn ich nun Eigenwerte berrechnen will, dann muss ich ja
[mm] $P_A[/mm] [t] = det(A - [mm] t*E_3) [/mm] = 0$ berrechnen.

ist [mm] $E_3$ [/mm] in diesem Fall dann die Matrix
[mm] $\begin{pmatrix} 1 & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x^2 \end{pmatrix}$ [/mm] ?



lg

        
Bezug
Darstellungsmatrix v. Bil.Form: Antwort
Status: (Antwort) fertig Status 
Datum: 06:59 Mo 01.06.2015
Autor: fred97


> Sei [mm]V:= \{p \in \mathbb{R}[x] | deg(p) \le 2\}[/mm] der
> R-Vektorraum der Polynome mit Koeffizienten in R und Grad
> [mm]\le 2[/mm]. Sei [mm]s: V \times V \rightarrow \mathbb{R}[/mm] die
> symmetrische Bilinearform definiert über die Vorschrift
>  
> [mm]s(p,q) := p(-2) * q(-2).[/mm]
>  
> Finden Sie die Darstellungsmatrix von [mm]s[/mm] bezüglich der
> Basis [mm](1,x,x^2)[/mm] und führen Sie eine
> Hauptachsentransformation durch.
>  Geben Sie den Rang und den Ausartungsraum von [mm]s[/mm] an.
>  
> Hi
>  
> also als Darstellungsmatrix habe ich:
>  
> [mm]A:= \begin{pmatrix} 4 & 4x & 4x^2 \\ 4x & 4x^2 & 4x^3 \\ 4x^2 & 4x^3 & 4x^4 \end{pmatrix}[/mm]

Das ist Unfug ! Gegeben ist die Basis  $ [mm] \{1,x,x^2\} [/mm] $. Setzt man

     [mm] p_0(x)=1, p_1(x)=x [/mm] und [mm] p_2(x)=x^2, [/mm]

so ist die Abb.-Matrix gegeben durch

     [mm] (s(p_i,p_j)) [/mm]

FRED

>  
> Wenn ich nun Eigenwerte berrechnen will, dann muss ich ja
>  [mm]$P_A[/mm] [t]= det(A - [mm]t*E_3)[/mm] = 0$ berrechnen.
>  
> ist [mm]E_3[/mm] in diesem Fall dann die Matrix
>  [mm]\begin{pmatrix} 1 & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x^2 \end{pmatrix}[/mm] ?
>  
>
>
> lg


Bezug
                
Bezug
Darstellungsmatrix v. Bil.Form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:52 Mo 01.06.2015
Autor: mathenoob3000

Also dann versteh ich es nicht, dann erhalte ich ja z.b.

[mm] $s(p_0, p_0) [/mm] = s(1,1) = 1*(-2) * 1*(-2) = 4$
[mm] $p(p_0, p_1) [/mm] = s(1,x) = 1*(-2) * x*(-2) = 4x$
...

oder was mache ich da falsch?


lg

Bezug
                        
Bezug
Darstellungsmatrix v. Bil.Form: Antwort
Status: (Antwort) fertig Status 
Datum: 08:02 Mo 01.06.2015
Autor: fred97


> Also dann versteh ich es nicht, dann erhalte ich ja z.b.
>  
> [mm]s(p_0, p_0) = s(1,1) = 1*(-2) * 1*(-2) = 4[/mm]

Nein. Es ist  [mm]s(p_0, p_0) = p_0(-2)*p_0(-2)=1[/mm]


>  [mm]p(p_0, p_1) = s(1,x) = 1*(-2) * x*(-2) = 4x[/mm]

Nein. Es ist  [mm]s(p_0, p_1) = p_0(-2)*p_1(-2)=-2[/mm]

FRED

>  
> ...
>  
> oder was mache ich da falsch?
>  
>
> lg


Bezug
                                
Bezug
Darstellungsmatrix v. Bil.Form: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:16 Mo 01.06.2015
Autor: mathenoob3000

aah ok, also erhalte ich dann die Darstellungsmatrix:

[mm] $\begin{pmatrix} 1 & -2 & 4 \\ -2 & 4 & -8 \\ 4 & -8 & 16 \end{pmatrix}$ [/mm]

So sollte es passen?

Bezug
                                        
Bezug
Darstellungsmatrix v. Bil.Form: Antwort
Status: (Antwort) fertig Status 
Datum: 08:31 Mo 01.06.2015
Autor: fred97


> aah ok, also erhalte ich dann die Darstellungsmatrix:
>  
> [mm]\begin{pmatrix} 1 & -2 & 4 \\ -2 & 4 & -8 \\ 4 & -8 & 16 \end{pmatrix}[/mm]
>  
> So sollte es passen?

Ja

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]