www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Darstellungsmatrix gesucht
Darstellungsmatrix gesucht < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellungsmatrix gesucht: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:13 Mo 25.04.2011
Autor: MatheStudi7

Aufgabe 1
(a)
Die lin. Abb $f:V [mm] \to [/mm] W$ der [mm] \IQ [/mm] - Vektorräume V und W sei bzgl. der Basen [mm] B_1 [/mm] = { [mm] u_1 [/mm] , [mm] u_2 [/mm] } von V und [mm] B_2 [/mm] = { [mm] v_1 [/mm] , [mm] v_2 [/mm] , [mm] v_3 [/mm] , [mm] v_4 [/mm] } von W durch die Matrix
$ [mm] M^{ B_1 , B_2 }_f [/mm] $ =  [mm] \pmat{ 1 & 0 \\ 0 & 1 \\ -2 & -1 \\ 2 & 0 } [/mm]
gegeben.
Sei [mm] B_3 [/mm] = { [mm] w_1 [/mm] , [mm] w_2 [/mm] , [mm] w_3 [/mm] , [mm] w_4 [/mm] } eine weitere Basis von W und es gelte:
[mm] v_1 [/mm] = [mm] 2w_1 [/mm]  +  [mm] 3w_2 [/mm]  +   [mm] w_3 [/mm]  -  [mm] w_4 [/mm]
[mm] v_2 [/mm] =  [mm] w_1 [/mm]  +      +   [mm] w_3 [/mm]
[mm] v_3 [/mm] =             -  [mm] 2w_3 [/mm]  +  [mm] w_4 [/mm]
[mm] v_4 [/mm] =  [mm] w_1 [/mm]  -  [mm] w_2 [/mm]          -  [mm] w_4 [/mm]

Berechnen Sie die Matrix $ [mm] M^{ B_1 , B_3 }_f [/mm] $ der Koordinatenfunktion zu f bzgl der Basen [mm] B_1 [/mm] und [mm] B_3. [/mm]

Aufgabe 2
(b)
Sei $ [mm] f_A [/mm] : [mm] \IR^3 \to \IR^2 [/mm] $ die lin. Abb. mit
x = [mm] \pmat{ x_1 \\ x_2 \\ x_3 } \mapsto f_A(x) [/mm] = A [mm] \cdot [/mm] x, wobei
A = [mm] \pmat{ -1 & 2 & 0\\ 3 & -4 & 1} [/mm] .
Welche Matrix hat die Koordinatenfunktion zu f bzgl der Basis
B = { [mm] \vektor{1 \\ 1 \\ 0} [/mm] , [mm] \vektor{0 \\ 1 \\ 0} [/mm] , [mm] \vektor{2 \\ 0 \\ 2} [/mm] }
von [mm] \IR^3 [/mm] und der Standardbasis B' von [mm] \IR^2. [/mm]

Hallo Matheraum,

auch von mir noch frohe Ostern.
Das neue Semester hat angefangen und es geht gleich mit Darstellungs- und Transformationsmatrizen weiter.
Die Erklärung hier bei euch, besonders aber []diese []zwei Artikel vom []Matheplaneten haben mir, denk ich, doch sehr gut weiter geholfen.
(Ob das wirklich der Fall ist, werdet Ihr/ich gleich sehen)

Zur (a)
In der Vorlesung haben wir gelernt, dass wenn man eine lin. Abb. $ f:V [mm] \to [/mm] W $ gegeben hat, sowie eine Basis [mm] B_{V} [/mm] von V und eine Basis [mm] B_{W} [/mm] von W ,und möchte eine Matrix die uns von [mm] B_{V2} [/mm] nach [mm] B_{W2} [/mm] bringt [mm] (B_{V2} [/mm] , [mm] B_{W2} [/mm] jeweils weitere Basis von V bzw W), man das folgendermaßen tuen kann:
Man transformiert von [mm] B_{V2} [/mm] nach [mm] B_{V} [/mm] , multipliziert mit der Darstellungsmatrix ( hier $ [mm] M^{ B_1 , B_2 }_f [/mm] $ ) und transformiert anschließend von [mm] B_{W} [/mm] nach [mm] B_{W2}. [/mm]
Unsere Notation: [mm] $T^{B_{W},B_{W2}}$ $\cdot$ $M^{ B_V , B_W }_f$ $\cdot$ $T^{B_{V2},B_{V}}$ [/mm]

So, jetzt habe ich ja nur eine "Anfangsbasis", also habe ich mir die Transformationsmatrix [mm] $T^{B_{V2},B_{V}}$ [/mm] ja schonmal gespart.
Es gilt also nur, die Transformationsbasis [mm] $T^{B_{W},B_{W2}}$ [/mm] (bzw [mm] $T^{B_{B_2},B_{B_3}}$ [/mm] ) zufinden.
Die lautet meiner Meinung nach:

[mm] \pmat{ 2 & 1 & 0 & 1 \\ 3 & 0 & 0 & -1 \\ 1 & 1 & -2 & 0 \\ -1 & 0 & 1 & -1 } [/mm] =: [mm] $T^{B_{B_2},B_{B_3}}$, [/mm]

deren Spalten die Koeffizienten des obigen Gleichungssystem sind.

Jetzt rechnet man noch [mm] $T^{B_{B_2},B_{B_3}}$ $\cdot$ [/mm] $ [mm] M^{ B_1 , B_2 }_f [/mm] $ und hat die gesuchte Matrix, welche einen von [mm] B_1 [/mm] nach [mm] B_3 [/mm] bringt.
(ich habe für $ [mm] M^{ B_1 , B_3 }_f [/mm] $ := [mm] \pmat{ 4 & 1 \\ 1 & 0 \\ 5 & 3 \\ -5 & -1 } [/mm] )


Zur (b)
Hier habe ich alle Basisvektoren aus B in [mm] f_A [/mm] eingesetzt und habe diese Bilder als Spalten der gesuchten Matrix interpretiert, also:

[mm] $f\vektor{1 \\ 1 \\ 0}$ [/mm] = [mm] $\pmat{ -1 & 2 & 0\\ 3 & -4 & 1}$ $\cdot$ $\vektor{1 \\ 1 \\ 0}$ [/mm] = [mm] \vektor{1 \\ -1}$ [/mm] , [mm] $f\vektor{0 \\ 1 \\ 0}$ [/mm] = [mm] $\vektor{2 \\ -4 }$ [/mm] und [mm] $f\vektor{2 \\ 0 \\ 1}$ [/mm] = [mm] $\vektor{-2 \\ 7}$ [/mm]

Also ist [mm] M^{B,B'}_f [/mm] = [mm] \pmat{ 1 & 2 & -2\\ -1 & -4 & 7 } [/mm]


Ich hoffe, ich habe nicht ZU ausführlich geschrieben. Ich will nur, dass man meinen Gedankengang nachvollziehen kann.
Danke für eure Hilfe

        
Bezug
Darstellungsmatrix gesucht: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mi 27.04.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]