www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Darstellungsmatrix
Darstellungsmatrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellungsmatrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:25 Mo 13.12.2010
Autor: nitromath

Aufgabe
Gegeben sind die Basen [mm] {\vektor{1 \\ 1 \\ 0}, \vektor{0 \\ 1 \\ 4}, \vektor{1 \\ 2 \\ 3}} [/mm] des [mm] \IR^{3} [/mm] und [mm] {\vektor{1 \\ 0}, \vektor{0 \\ 2}} [/mm] des [mm] \IR^{2}. [/mm]
Bestimmen Sie für die lineare Abbildung f: [mm] \IR^{3} \to \IR^{2}, [/mm] definiert durch f(x,y,z) = (x+y,2z), die Darstellungsmatrix bezüglich dieser Basen.

Hi,

meine Lösung:

f(1,1,0) = (1+1,2*0) = [mm] \vektor{2 \\ 0} [/mm] = 2 * [mm] \vektor{1 \\ 0} [/mm] + 0 * [mm] \vektor{0 \\ 2} [/mm]
f(0,1,4) = (0+1,2*4) = [mm] \vektor{1 \\ 8} [/mm] = 1 * [mm] \vektor{1 \\ 0} [/mm] + 4 * [mm] \vektor{0 \\ 2} [/mm]
f(1,2,3) = (1+2,2*3) = [mm] \vektor{3 \\ 6} [/mm] = 3 * [mm] \vektor{1 \\ 0} [/mm] + 3 * [mm] \vektor{0 \\ 2} [/mm]

somit ist die Matrix A = [mm] \pmat{ 2 & 1 & 3 \\ 0 & 4 & 3} [/mm]

Ist das so korrekt?

Allerdings verstehe ich nun nicht, wenn ich den Vektor [mm] \vektor{1 \\ 2 \\ 3} [/mm] mit A multipliziere bekomme ich als Ergebnis den Vektor [mm] \vektor{13 \\ 17}. [/mm] Aber f(1,2,3) = (3,6). Da stimmt doch etwas nicht, oder verstehe ich da was falsch?

lg, nitro

        
Bezug
Darstellungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Mo 13.12.2010
Autor: MathePower

Hallo nitromath,

> Gegeben sind die Basen [mm]{\vektor{1 \\ 1 \\ 0}, \vektor{0 \\ 1 \\ 4}, \vektor{1 \\ 2 \\ 3}}[/mm]
> des [mm]\IR^{3}[/mm] und [mm]{\vektor{1 \\ 0}, \vektor{0 \\ 2}}[/mm] des
> [mm]\IR^{2}.[/mm]
>  Bestimmen Sie für die lineare Abbildung f: [mm]\IR^{3} \to \IR^{2},[/mm]
> definiert durch f(x,y,z) = (x+y,2z), die Darstellungsmatrix
> bezüglich dieser Basen.
>  Hi,
>  
> meine Lösung:
>  
> f(1,1,0) = (1+1,2*0) = [mm]\vektor{2 \\ 0}[/mm] = 2 * [mm]\vektor{1 \\ 0}[/mm]
> + 0 * [mm]\vektor{0 \\ 2}[/mm]
>  f(0,1,4) = (0+1,2*4) = [mm]\vektor{1 \\ 8}[/mm]
> = 1 * [mm]\vektor{1 \\ 0}[/mm] + 4 * [mm]\vektor{0 \\ 2}[/mm]
>  f(1,2,3) =
> (1+2,2*3) = [mm]\vektor{3 \\ 6}[/mm] = 3 * [mm]\vektor{1 \\ 0}[/mm] + 3 *
> [mm]\vektor{0 \\ 2}[/mm]
>  
> somit ist die Matrix A = [mm]\pmat{ 2 & 1 & 3 \\ 0 & 4 & 3}[/mm]
>  
> Ist das so korrekt?


Ja, das ist korrekt. [ok]


>  
> Allerdings verstehe ich nun nicht, wenn ich den Vektor
> [mm]\vektor{1 \\ 2 \\ 3}[/mm] mit A multipliziere bekomme ich als
> Ergebnis den Vektor [mm]\vektor{13 \\ 17}.[/mm] Aber f(1,2,3) =


Poste doch mal, wie Du auf dieses Ergebnis kommst.


> (3,6). Da stimmt doch etwas nicht, oder verstehe ich da was
> falsch?
>  
> lg, nitro


Gruss
MathePower

Bezug
                
Bezug
Darstellungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 Mo 13.12.2010
Autor: nitromath


> Hallo nitromath,
>  
> > Gegeben sind die Basen [mm]{\vektor{1 \\ 1 \\ 0}, \vektor{0 \\ 1 \\ 4}, \vektor{1 \\ 2 \\ 3}}[/mm]
> > des [mm]\IR^{3}[/mm] und [mm]{\vektor{1 \\ 0}, \vektor{0 \\ 2}}[/mm] des
> > [mm]\IR^{2}.[/mm]
>  >  Bestimmen Sie für die lineare Abbildung f: [mm]\IR^{3} \to \IR^{2},[/mm]
> > definiert durch f(x,y,z) = (x+y,2z), die Darstellungsmatrix
> > bezüglich dieser Basen.
>  >  Hi,
>  >  
> > meine Lösung:
>  >  
> > f(1,1,0) = (1+1,2*0) = [mm]\vektor{2 \\ 0}[/mm] = 2 * [mm]\vektor{1 \\ 0}[/mm]
> > + 0 * [mm]\vektor{0 \\ 2}[/mm]
>  >  f(0,1,4) = (0+1,2*4) =
> [mm]\vektor{1 \\ 8}[/mm]
> > = 1 * [mm]\vektor{1 \\ 0}[/mm] + 4 * [mm]\vektor{0 \\ 2}[/mm]
>  >  f(1,2,3)
> =
> > (1+2,2*3) = [mm]\vektor{3 \\ 6}[/mm] = 3 * [mm]\vektor{1 \\ 0}[/mm] + 3 *
> > [mm]\vektor{0 \\ 2}[/mm]
>  >  
> > somit ist die Matrix A = [mm]\pmat{ 2 & 1 & 3 \\ 0 & 4 & 3}[/mm]
>  
> >  

> > Ist das so korrekt?
>  
>
> Ja, das ist korrekt. [ok]
>  
>
> >  

> > Allerdings verstehe ich nun nicht, wenn ich den Vektor
> > [mm]\vektor{1 \\ 2 \\ 3}[/mm] mit A multipliziere bekomme ich als
> > Ergebnis den Vektor [mm]\vektor{13 \\ 17}.[/mm] Aber f(1,2,3) =
>
>
> Poste doch mal, wie Du auf dieses Ergebnis kommst.
>  

Hi, so:

2 * 1 + 1 * 2 + 3 * 3 = 13
0 * 1 + 4 * 2 + 3 * 3 = 17

lg

>
> > (3,6). Da stimmt doch etwas nicht, oder verstehe ich da was
> > falsch?
>  >  
> > lg, nitro
>
>
> Gruss
>  MathePower


Bezug
                        
Bezug
Darstellungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Mo 13.12.2010
Autor: MathePower

Hallo nitromath,

> > Hallo nitromath,
>  >  
> > > Gegeben sind die Basen [mm]{\vektor{1 \\ 1 \\ 0}, \vektor{0 \\ 1 \\ 4}, \vektor{1 \\ 2 \\ 3}}[/mm]
> > > des [mm]\IR^{3}[/mm] und [mm]{\vektor{1 \\ 0}, \vektor{0 \\ 2}}[/mm] des
> > > [mm]\IR^{2}.[/mm]
>  >  >  Bestimmen Sie für die lineare Abbildung f: [mm]\IR^{3} \to \IR^{2},[/mm]
> > > definiert durch f(x,y,z) = (x+y,2z), die Darstellungsmatrix
> > > bezüglich dieser Basen.
>  >  >  Hi,
>  >  >  
> > > meine Lösung:
>  >  >  
> > > f(1,1,0) = (1+1,2*0) = [mm]\vektor{2 \\ 0}[/mm] = 2 * [mm]\vektor{1 \\ 0}[/mm]
> > > + 0 * [mm]\vektor{0 \\ 2}[/mm]
>  >  >  f(0,1,4) = (0+1,2*4) =
> > [mm]\vektor{1 \\ 8}[/mm]
> > > = 1 * [mm]\vektor{1 \\ 0}[/mm] + 4 * [mm]\vektor{0 \\ 2}[/mm]
>  >  >  
> f(1,2,3)
> > =
> > > (1+2,2*3) = [mm]\vektor{3 \\ 6}[/mm] = 3 * [mm]\vektor{1 \\ 0}[/mm] + 3 *
> > > [mm]\vektor{0 \\ 2}[/mm]
>  >  >  
> > > somit ist die Matrix A = [mm]\pmat{ 2 & 1 & 3 \\ 0 & 4 & 3}[/mm]
>  
> >  

> > >  

> > > Ist das so korrekt?
>  >  
> >
> > Ja, das ist korrekt. [ok]
>  >  
> >
> > >  

> > > Allerdings verstehe ich nun nicht, wenn ich den Vektor
> > > [mm]\vektor{1 \\ 2 \\ 3}[/mm] mit A multipliziere bekomme ich als
> > > Ergebnis den Vektor [mm]\vektor{13 \\ 17}.[/mm] Aber f(1,2,3) =
> >
> >
> > Poste doch mal, wie Du auf dieses Ergebnis kommst.
>  >  
>
> Hi, so:
>  
> 2 * 1 + 1 * 2 + 3 * 3 = 13
>  0 * 1 + 4 * 2 + 3 * 3 = 17


Durch die Darstellungsmatrix werden die Koordinaten bzgl.
der Basis in [mm]\IR^{3}[/mm] durch die Abbildung  f in
Koordinaten der Basis in  [mm]\IR^{2}[/mm] überführt.

Der Vektor [mm]\pmat{1 \\ 2 \\ 3 }[/mm] hat bezüglich der Basis in [mm]\IR^{3}[/mm]
die Koordinaten [mm]\pmat{0 \\ 0 \\ 1}[/mm]

Wendet man jetzt die Darstellungsmatrix auf diese Koordianten an,
so erhält man die Koordinaten bzgl. der Basis in [mm]\IR^{2}[/mm].

[mm]\pmat{ 2 & 1 & 3 \\ 0 & 4 & 3}\pmat{0 \\ 0 \\ 1}=\pmat{3 \\ 3}[/mm]

Da hast Du also etwas verwechselt.


>  
> lg
>  
> >
> > > (3,6). Da stimmt doch etwas nicht, oder verstehe ich da was
> > > falsch?
>  >  >  
> > > lg, nitro
> >
> >
> > Gruss
>  >  MathePower

>


Gruss
MathePower  

Bezug
                                
Bezug
Darstellungsmatrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:13 Mo 13.12.2010
Autor: nitromath


> Hallo nitromath,
>  
> > > Hallo nitromath,
>  >  >  
> > > > Gegeben sind die Basen [mm]{\vektor{1 \\ 1 \\ 0}, \vektor{0 \\ 1 \\ 4}, \vektor{1 \\ 2 \\ 3}}[/mm]
> > > > des [mm]\IR^{3}[/mm] und [mm]{\vektor{1 \\ 0}, \vektor{0 \\ 2}}[/mm] des
> > > > [mm]\IR^{2}.[/mm]
>  >  >  >  Bestimmen Sie für die lineare Abbildung f:
> [mm]\IR^{3} \to \IR^{2},[/mm]
> > > > definiert durch f(x,y,z) = (x+y,2z), die Darstellungsmatrix
> > > > bezüglich dieser Basen.
>  >  >  >  Hi,
>  >  >  >  
> > > > meine Lösung:
>  >  >  >  
> > > > f(1,1,0) = (1+1,2*0) = [mm]\vektor{2 \\ 0}[/mm] = 2 * [mm]\vektor{1 \\ 0}[/mm]
> > > > + 0 * [mm]\vektor{0 \\ 2}[/mm]
>  >  >  >  f(0,1,4) = (0+1,2*4)
> =
> > > [mm]\vektor{1 \\ 8}[/mm]
> > > > = 1 * [mm]\vektor{1 \\ 0}[/mm] + 4 * [mm]\vektor{0 \\ 2}[/mm]
>  >  >  >  
> > f(1,2,3)
> > > =
> > > > (1+2,2*3) = [mm]\vektor{3 \\ 6}[/mm] = 3 * [mm]\vektor{1 \\ 0}[/mm] + 3 *
> > > > [mm]\vektor{0 \\ 2}[/mm]
>  >  >  >  
> > > > somit ist die Matrix A = [mm]\pmat{ 2 & 1 & 3 \\ 0 & 4 & 3}[/mm]
>  
> >  

> > >  

> > > >  

> > > > Ist das so korrekt?
>  >  >  
> > >
> > > Ja, das ist korrekt. [ok]
>  >  >  
> > >
> > > >  

> > > > Allerdings verstehe ich nun nicht, wenn ich den Vektor
> > > > [mm]\vektor{1 \\ 2 \\ 3}[/mm] mit A multipliziere bekomme ich als
> > > > Ergebnis den Vektor [mm]\vektor{13 \\ 17}.[/mm] Aber f(1,2,3) =
> > >
> > >
> > > Poste doch mal, wie Du auf dieses Ergebnis kommst.
>  >  >  
> >
> > Hi, so:
>  >  
> > 2 * 1 + 1 * 2 + 3 * 3 = 13
>  >  0 * 1 + 4 * 2 + 3 * 3 = 17
>  
>
> Durch die Darstellungsmatrix werden die Koordinaten bzgl.
>  der Basis in [mm]\IR^{3}[/mm] durch die Abbildung  f in
>  Koordinaten der Basis in  [mm]\IR^{2}[/mm] überführt.
>  
> Der Vektor [mm]\pmat{1 \\ 2 \\ 3 }[/mm] hat bezüglich der Basis in
> [mm]\IR^{3}[/mm]
>  die Koordinaten [mm]\pmat{0 \\ 0 \\ 1}[/mm]
>  
> Wendet man jetzt die Darstellungsmatrix auf diese
> Koordianten an,
>  so erhält man die Koordinaten bzgl. der Basis in
> [mm]\IR^{2}[/mm].
>  
> [mm]\pmat{ 2 & 1 & 3 \\ 0 & 4 & 3}\pmat{0 \\ 0 \\ 1}=\pmat{3 \\ 3}[/mm]
>  
> Da hast Du also etwas verwechselt.
>  
>
> >  

> > lg
>  >  
> > >
> > > > (3,6). Da stimmt doch etwas nicht, oder verstehe ich da was
> > > > falsch?
>  >  >  >  
> > > > lg, nitro
> > >
> > >
> > > Gruss
>  >  >  MathePower
> >
>  
>
> Gruss
>  MathePower  

Ah, ok, jetzt ists klar! Vielen Dank für deine Hilfe!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]