www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Darstellungsmatrix
Darstellungsmatrix < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellungsmatrix: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:53 Mi 26.04.2006
Autor: mushroom

Aufgabe
Berechnen Sie alle Eigenwerte und zugehörigen Eigenräume zu $D:\ [mm] C^{\infty} (\mathbb [/mm] R) [mm] \to C^{\infty}(\mathbb [/mm] R)$ definiert als $(Df)(t):= f'(t)$. [mm] ($C^{\infty}(\mathbb [/mm] R)$ bezeichnet der [mm] $\mathbb [/mm] R$-Vektorraum der beliebig oft differenzierbaren Funktionen von [mm] $\mathbb [/mm] R$ nach [mm] $\mathbb [/mm] R$).

Hallo,

um die Eigenwerte zu berechnen, denke ich mir, daß ich die Darstellungsmatrix der Abbildung $D$ brauche. Allerdings weiß ich überhaupt nicht wie ich hier ansetzen soll. Zunächst habe ich nur an allgemeine Polynome gedacht, allerdings sind ja noch weitere Funktionen (z.B. exp(x)) unendlich oft diffbar. Wir kann ich jetzt dafür eine Darstellungsmatrix aufstellen, um anschließend die Eigenwerte zu berechnen?

Gruß
Markus

        
Bezug
Darstellungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Mi 26.04.2006
Autor: DaMenge

Hi,

schon der Raum der Polynome ist unendlich-dimensional, wie willst du hier eine Matrix angeben? (Geschweige denn sinnvolle Berechnungen darauf machen?)

Du musst vielmehr diejenigen Funktionen f suchen, so dass [mm] $\forall [/mm] x [mm] :\quad [/mm] f'(x)=k*f(x)$ für [mm] $k\in\IR$, [/mm] wenn ich mich recht an Ana erinnere war das doch eine ziemlich starke Einschränkung, oder?
(exp-fkten, Konstante Funktionen)

aber da ich das nicht mehr so aus dem Kopf weiß, stelle ich das mal auf "teilweise beantwortet"

viele Grüße
DaMenge

Bezug
                
Bezug
Darstellungsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Mi 26.04.2006
Autor: mushroom


> Hi,

Hallo,

> schon der Raum der Polynome ist unendlich-dimensional, wie willst du hier eine Matrix angeben? (Geschweige denn sinnvolle Berechnungen darauf machen?)

>

> Du musst vielmehr diejenigen Funktionen f suchen, so dass $ [mm] \forall [/mm] x [mm] :\quad f'(x)=k\cdot{}f(x) [/mm] $ für $ [mm] k\in\IR [/mm] $, wenn ich mich recht an Ana erinnere war das doch eine ziemlich starke Einschränkung, oder?
> (exp-fkten, Konstante Funktionen)

Jetzt wo es wieder dasteht, kann ich mich erinnern, daß wir auch diesen Hinweis bekommen haben zu dieser Aufgabe, aber irgendwie hilft mir das nicht weiter. Wie kann ich denn von diesem Hinweis auf eine darstellende Matrix kommen?

>

> viele Grüße
> DaMenge

Markus

Bezug
                        
Bezug
Darstellungsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Mi 26.04.2006
Autor: choosy

Es gibt eben in unendlichdimensionalen vektorräumen keine darstellende Matrix.....
du musst einfach die differentialgleichung $y'=ky$ lösen...
die lösungen ungleich 0 sind die eigenfunktionen...

Bezug
        
Bezug
Darstellungsmatrix: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 28.04.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]