www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Darstellende Matrix
Darstellende Matrix < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellende Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Mo 17.12.2012
Autor: marcye

Aufgabe
Sei nun [mm] B_{2} [/mm] die Standardbasis des [mm] \IR^{3}. [/mm] Wir betrachten die Abbildung

G: [mm] \IR^{3} \to \IR^{3}, \vektor{a \\ b \\ c} \to \vektor{a-b+2c \\ -a+2b \\ -2a+c} [/mm]

Bestimmen Sie die darstellende Matrix [mm] G_{B2} [/mm] und berechnen Sie [mm] G_{B2} \vektor{a \\ b \\ c} [/mm] für [mm] \vektor{a \\ b \\ c} \in \IR^{3} [/mm]

Ich habe die darstellende Matrix [mm] G_{B2} [/mm] berechnet:

[mm] G_{B2}= \pmat{ \bruch{-1}{3} & \bruch{1}{3} & \bruch{-2}{3} \\ \bruch{-2}{3} & \bruch{5}{3} & \bruch{2}{3} \\ \bruch{-7}{6} & \bruch{2}{3} & \bruch{7}{6} } [/mm]

Mir ist beim zweiten Teil der Aufgabe überhaupt nicht klar was ich machen soll.
Soll ich  den Vektor [mm] \vektor{a \\ b \\ c} [/mm] mit  [mm] G_{B2} [/mm] abbilden? Dann hätte ich ja nur meine darstellende Matrix mit den Variablen a,b,c und Faktoren davor, das hätte für mich jetzt keinen Mehrwert. Ich würde mich über einen kleinen Denkanstoß sehr freuen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Darstellende Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Mo 17.12.2012
Autor: angela.h.b.


> Sei nun [mm]B_{2}[/mm] die Standardbasis des [mm]\IR^{3}.[/mm] Wir betrachten
> die Abbildung
>  
> G: [mm]\IR^{3} \to \IR^{3}, \vektor{a \\ b \\ c} \to \vektor{a-b+2c \\ -a+2b \\ -2a+c}[/mm]
>  
> Bestimmen Sie die darstellende Matrix [mm]G_{B2}[/mm] und berechnen
> Sie [mm]G_{B2} \vektor{a \\ b \\ c}[/mm] für [mm]\vektor{a \\ b \\ c} \in \IR^{3}[/mm]
>  
> Ich habe die darstellende Matrix [mm]G_{B2}[/mm] berechnet:
>  
> [mm]G_{B2}= \pmat{ \bruch{-1}{3} & \bruch{1}{3} & \bruch{-2}{3} \\ \bruch{-2}{3} & \bruch{5}{3} & \bruch{2}{3} \\ \bruch{-7}{6} & \bruch{2}{3} & \bruch{7}{6} }[/mm]

Hallo,

wie hast Du diese Matrix gefunden?
(Sie stimmt nicht.)

>  
> Mir ist beim zweiten Teil der Aufgabe überhaupt nicht klar
> was ich machen soll.
>  Soll ich  den Vektor [mm]\vektor{a \\ b \\ c}[/mm] mit  [mm]G_{B2}[/mm]
> abbilden? Dann hätte ich ja nur meine darstellende Matrix
> mit den Variablen a,b,c und Faktoren davor,

???
Was meinst Du damit?

Ich gehe stark davon aus, daß Du [mm] G_{B_{2}}*\vektor{a\\b\\c} [/mm] berechnen sollst, und wenn alles gut läuft, sollte da [mm] G(\vektor{a\\b\\c}) [/mm]  rauskommen.

LG Angela

> das hätte für
> mich jetzt keinen Mehrwert. Ich würde mich über einen
> kleinen Denkanstoß sehr freuen.
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Darstellende Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:31 Mo 17.12.2012
Autor: marcye

Ja die darstellende Matrix war so falsch, so müsste sie richtig sein oder?

[mm] \pmat{ 1 & -1 & 2 \\ -1 & 2 & 0 \\ -2 & 0 &1} [/mm]

Das Ergebnis von [mm] G_{B2} \vektor{a \\ b \\ c} [/mm] ist dann

[mm] \vektor{a-b+2c \\ -a+2b \\ -2a+c} [/mm]

Okay also zeigt mir das, dass der Weg über die abbildende Matrix das gleiche Ergebnis hat wie die Abbildung G. Sollte ja auch so sein.

Bezug
                        
Bezug
Darstellende Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Mo 17.12.2012
Autor: angela.h.b.


> Ja die darstellende Matrix war so falsch, so müsste sie
> richtig sein oder?
>  
> [mm]\pmat{ 1 & -1 & 2 \\ -1 & 2 & 0 \\ -2 & 0 &1}[/mm]

Hallo,

ja.

>  
> Das Ergebnis von [mm]G_{B2} \vektor{a \\ b \\ c}[/mm] ist dann
>
> [mm]\vektor{a-b+2c \\ -a+2b \\ -2a+c}[/mm]

Ja.

>  
> Okay also zeigt mir das, dass der Weg über die abbildende
> Matrix das gleiche Ergebnis hat wie die Abbildung G. Sollte
> ja auch so sein.  

Ja. Andernfalls müßte man sich echt Gedanken machen.

LG Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]