www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Darstellende Matrix
Darstellende Matrix < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Darstellende Matrix: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:57 Mi 17.12.2008
Autor: Mathe-Alfi

Aufgabe
Die lineare Abbildung f: [mm] \IR² \to \IR² [/mm] ist durch folgende Matrix gegeben:
[mm] 1/2*\pmat{ 1 & 1 \\ 1 & 1 } [/mm]

Geben Sie eine Basis A=(v1,v2) von [mm] \IR² [/mm] an, sodass die gegebene Abbildung folgende darstellende Matrix hat:
M(f)= [mm] \pmat{ 1 & 0 \\ 0 & 0 } [/mm]

Hallo! =D

Ich weiß nicht so recht, wie ich die Aufgabe angehen soll. Hat jemand ein Tipp?

Ich hätte jetzt gedacht, dass man ein Gleichungssystem aufstellt mit:

((1/2,1/2))=1*((x,y))+0*((u,w))
((1/2,1/2))=0*((x,y))+0*((u,w))

wobei ((x,y))=v1 und ((u,w))=v2

Aber das lässt sich dann ja nicht lösen, wegen der zweiten Zeile mit der 0, oder?

Lg

        
Bezug
Darstellende Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 Mi 17.12.2008
Autor: Blech


> Die lineare Abbildung f: [mm]\IR² \to \IR²[/mm] ist durch folgende
> Matrix gegeben:
>  [mm]1/2*\pmat{ 1 & 1 \\ 1 & 1 }[/mm]
>  
> Geben Sie eine Basis A=(v1,v2) von [mm]\IR²[/mm] an, sodass die
> gegebene Abbildung folgende darstellende Matrix hat:
>  M(f)= [mm]\pmat{ 1 & 0 \\ 0 & 0 }[/mm]
>  Hallo! =D
>  
> Ich weiß nicht so recht, wie ich die Aufgabe angehen soll.
> Hat jemand ein Tipp?
>

Nennen wir die urspr. Basis [mm] $(e_1, e_2)$, [/mm] dann wird ein beliebiger Vektor [mm] $p\in\IR^2$ [/mm] bzgl. der Basis als [mm] $p=k*e_1+l*e_2$ [/mm] dargestellt, und er wird durch die Abb. abgebildet auf:
[mm] $\frac12(k+l)e_1+\frac12(k+l)e_2$ [/mm]

Den Vektor kann man jetzt bzgl. der neuen Basis schreiben als [mm] $p=r*v_1+s*v_2$ [/mm] und die Matrix bildet ihn ab auf:
[mm] $r*v_1$ [/mm]

Die beiden Matrizen sollen die gleiche lin Abb darstellen, also muß wegen
[mm] $p=k*e_1+l*e_2=r*v_1+s*v_2$ [/mm]

auch gelten
[mm] $\frac12(k+l)(e_1+e_2)=r*v_1$ [/mm]

Jetzt legen wir einfach mal fest [mm] $v_1:=e_1+e_2$ [/mm] und berechnen dann, wie r, s und [mm] $v_2$ [/mm] ausschauen müssen, daß alles stimmt.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]