www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - D und W bei Umkehrfunktionen
D und W bei Umkehrfunktionen < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

D und W bei Umkehrfunktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:54 Fr 04.11.2022
Autor: appo13

Aufgabe
Bestimme Definitions- und Wertebereich von f(x) und seiner Umkehrfunktion. Bestimme auch die Umkehrfunktion.
[mm] f(x)=\wurzel{25-4x^{2}} [/mm]

Guten Abend zusammen,
ich habe neulich die Umkehrfunktion von o.g. Funktion f(x) besprochen.
Ich kam zunächst zur Umkehrfunktion [mm] f^-1(x)=0,5\wurzel{-x^{2}+25} [/mm]

Nun wollte ich den Satz benutzen, dass der Definitionsbereich einer Funktion, dem Wertebereich seiner Umkehrfunktion entspricht. (Analog Werte- entspricht Definitionsbereich)

f^-1(x) hatte nun den Definitionsbereich D={-5;5}, welches nach dem Satz oben der Wertebereich von f(x) sein müsste. Stimmt aber nicht, da f(x) nur positive Y-Werte hat, wie mir eine Zeichnung beider Funktionen offenbarte.

Nun ist f(x) aber auch in seinem Definitionsbereich eingeshränkt, dieser ist nämlich D={-2,5;2,5} Ich vermute es hat damit zu tun, dass die Umdrehung des Definitions- und Wertebereichs hier nicht funktioniert. Außerdem ist f(x) ja entweder im Interval [-2,5;0] oder [0,2,5] umkehrbar.

Was übersehe ich?

Herzlichen Dank im Voraus!

        
Bezug
D und W bei Umkehrfunktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Fr 04.11.2022
Autor: HJKweseleit

Du hast schon alles selbst erkannt.

Da f(x) nicht monoton steigt oder fällt, kommt es vor, dass zu zwei verschiedenen x-Werten der selbe y-Wert herauskommt, z.B. f(2,5)=f(-2,5)=0.
In der Umkehrung müsste nun [mm] f^{-1}(0) [/mm] sowohl 2,5 als auch -2,5 sein, aber nach dem, was eine Funktion ist, ist nur ein Wert erlaubt. Deshalb musst du den Definitionsbereich von f so einschränken, dass kein Element aus dem Wertebereich von f für 2 verschiedene x-Werte genommen werden kann. Am einfachsten geht das hier, weil f(x)=f(-x) ist, indem du für [mm] D_f [/mm] das Intervall [ -2,5 | 0 ] nimmst oder [ 0 | 2,5 ].

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]