www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL von Feder-Mass-Problem
DGL von Feder-Mass-Problem < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL von Feder-Mass-Problem: DGL ist da, aber wie lösen?
Status: (Frage) überfällig Status 
Datum: 16:09 Mo 02.06.2008
Autor: traveler009

Aufgabe
Transformieren Sie gekoppelte DGL 2. Ordnung in ein DGL-System 1. Ordnung der Form $x'=Ax$ mit [mm] x=[x_{1} x_{1}' x_{2} x_{2}']^{T}. [/mm]
Finden Sie die allg. Lösung des DGL-Systems.

Hallo Forum,

Ich habe die Aufgabe die Schwingungen eines Feder-Masse-Systems zu beschreiben. Aufstellen der DGL ist kein Problem. Leider finde ich nicht den richtigen Weg die DGL zu lösen.
Die DGL lautet:

[mm] \begin{pmatrix} x_{1}'' \\ x_{2}'' \end{pmatrix} = \frac{1}{m} \begin{pmatrix} -k_{2}-k_{1} & k_{2} \\ k_{2} & -k_{2}-k_{1} \end{pmatrix} \cdot \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} [/mm]

Nun soll ich diese DGL in die Form $x'=Ax$ mit [mm] x=[x_{1} x_{1}' x_{2} x_{2}']^{T} [/mm] bringen.
Gesagt getan.

[mm] \begin{pmatrix} x_{1} \\ x_{1}' \\ x_{2} \\ x_{2}' \end{pmatrix} ' = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \frac{-k_{2}-k_{1}}{m} & 0 & \frac{k_{2}}{m} & 0 \\ 0 & 0 & 0 & 1 \\ \frac{k_{2}}{m} & 0 & \frac{-k_{2}-k_{1}}{m} & 0 \end{pmatrix} \cdot \begin{pmatrix} x_{1} \\ x_{1}' \\ x_{2} \\ x_{2}' \end{pmatrix} [/mm]

Aber wie weiter?
Kennt sich da jemand besser aus als ich? Schonmal vielen Dank für die Antworten.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
DGL von Feder-Mass-Problem: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:37 Di 03.06.2008
Autor: traveler009

So ich habe jetzt nochmal ein paar Skipte gewälzt. Ich muss also das die Eigenwerte und Eigenvektoren berechnen.

Die Eigenwerte von A sind
[mm] \left\lbrace -\frac{i\sqrt{k_{1}}}{\sqrt{m}}, \frac{i\sqrt{k_{1}}}{\sqrt{m}}, -\frac{\sqrt{-k_{1}-2k_{2}}}{\sqrt{m}}, \frac{\sqrt{-k_{1}-2k_{2}}}{\sqrt{m}} \right\rbrace [/mm]
mit folgenden Eigenvektoren
[mm] \left\lbrace \begin{pmatrix} \frac{i\sqrt{m}}{\sqrt{k_{1}}} \\ 1 \\ \frac{i\sqrt{m}}{\sqrt{k_{1}}} \\ 1 \end{pmatrix} , \begin{pmatrix} -\frac{i\sqrt{m}}{\sqrt{k_{1}}} \\ 1 \\ -\frac{i\sqrt{m}}{\sqrt{k_{1}}} \\ 1 \end{pmatrix} , \begin{pmatrix} \frac{\sqrt{m}}{\sqrt{-k_{1}-2k_{2}}} \\ -1 \\ -\frac{\sqrt{m}}{\sqrt{-k_{1}-2k_{2}}} \\ 1 \end{pmatrix} , \begin{pmatrix} -\frac{\sqrt{m}}{\sqrt{-k_{1}-2k_{2}}} \\ -1 \\ \frac{\sqrt{m}}{\sqrt{-k_{1}-2k_{2}}} \\ 1 \end{pmatrix} \right\rbrace [/mm]

Ok, aber wie ist der Lösungsansatz. Alle Beispiel welche ich gesehen habe waren mir nicht so ergründlich. Ich möchte am Ende eigentlich irgendwas mit Sinus und Cosinus raus haben. Oder bin ich da auf dem falschen Weg?

Vielen Dank,
Johannes

Bezug
                
Bezug
DGL von Feder-Mass-Problem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 05.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
DGL von Feder-Mass-Problem: Beispiel gefunden
Status: (Frage) überfällig Status 
Datum: 17:47 Di 03.06.2008
Autor: traveler009

Nach langen googlen habe ich auch endlich mein Beispiel im Internet gefunden. Ich konnte das auch weitesgehend nachvollziehen.

http://scienceworld.wolfram.com/physics/SpringsThreeSpringsandTwoMasses.html

Aber an eine kleinen Stelle harpert es noch.
Als Lösungsansatz wird [mm]x_{n}=A_{n}e^{iwt}[/mm] gewählt.
Aber was ist [mm]A_{n}[/mm]?

Ich sollte doch am Ende die Eigenwerte und Eigenvektoren in diese Gleichung einsetzen können. Eigenwert ist klar, der Eigenvektor muss als irgendwie in das A reinrutschen, aber wie?

Vielen Dank,
Johannes

Bezug
                
Bezug
DGL von Feder-Mass-Problem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 05.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
DGL von Feder-Mass-Problem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Fr 06.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]