www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL trennbare Variablen
DGL trennbare Variablen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL trennbare Variablen: Prinzip
Status: (Frage) beantwortet Status 
Datum: 20:14 Mo 17.09.2012
Autor: hennes82

Aufgabe
1.) yy'=-cos(x)
2.) sin(x)-y'=cos(x)+y'

Ich bekomme leider diese Aufgaben nicht hin...Irgendwie "biege ich beim Lösen immer falsch ab."

1.) [mm] y'=-cos(x)*y^{-1} [/mm]

mit f(x)=-cos(x) und [mm] g(h)=y^{-1} [/mm]

[mm] \bruch{dy}{dx}=-cos(x)*y^{-1} [/mm] ->  ydy=-cos(x)dx

[mm] \integral_{}^{}{ydy}=\integral_{}^{}{-cos(x)dx} [/mm]

[mm] y^{2}+C=-sin(x) [/mm]

[mm] y=\wurzel[]{-sin(x)-C} [/mm]

In der Lösung steht aber:  [mm] y=\wurzel[]{C-2sin(x)} [/mm]



2.) sin(x)-y'=cos(x)+y'
2y'=sin(x)-cos(x)
[mm] y'=(sin(x)-cos(x))*\bruch{1}{2} [/mm]

mit f(x)=(sin(x)-cos(x))
und [mm] g(h)=\bruch{1}{2} [/mm]

[mm] y'=\bruch{dy}{dx}=f(x)*g(h) [/mm]
[mm] \bruch{dy}{g(h)}=f(x)dx [/mm]
[mm] \integral_{}^{}{2*dy}=\integral_{}^{}{sin(x)-cos(x)dx} [/mm]
[mm] 2y=\bruch{-1}{2}(cos(x)-sin(x)) [/mm]
[mm] y=\bruch{-1}{4}(cos(x)-sin(x)) [/mm]

Die Lösung soll aber sein:   y=-0,5(cos(x)+sin(x))

Ich wäre sehr dankbar, wenn mir jemand meinen Fehler zeigen kann...

        
Bezug
DGL trennbare Variablen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Mo 17.09.2012
Autor: Richie1401

Hallo Hennes,

> 1.) yy'=-cos(x)
>  2.) sin(x)-y'=cos(x)+y'
>  Ich bekomme leider diese Aufgaben nicht hin...Irgendwie
> "biege ich beim Lösen immer falsch ab."
>  
> 1.) [mm]y'=-cos(x)*y^{-1}[/mm]
>  
> mit f(x)=-cos(x) und [mm]g(h)=y^{-1}[/mm]
>  
> [mm]\bruch{dy}{dx}=-cos(x)*y^{-1}[/mm] ->  ydy=-cos(x)dx

>  
> [mm]\integral_{}^{}{ydy}=\integral_{}^{}{-cos(x)dx}[/mm]
>  
> [mm]y^{2}+C=-sin(x)[/mm]

Hier wurde die linke Seite falsch integriert.

>  
> [mm]y=\wurzel[]{-sin(x)-C}[/mm]
>  
> In der Lösung steht aber:  [mm]y=\wurzel[]{C-2sin(x)}[/mm]
>  
>
>
> 2.) sin(x)-y'=cos(x)+y'
>  2y'=sin(x)-cos(x)
>  [mm]y'=(sin(x)-cos(x))*\bruch{1}{2}[/mm]

Hier musst du doch nur noch integrieren.
[mm] \integral{y' dx}=y(x)=\integral{(sin(x)-cos(x))*\bruch{1}{2}dx}=\bruch{1}{2}*\integral{(sin(x)-cos(x)dx}=\bruch{1}{2}*(\integral{sin(x)dx}-\integral{cos(x)dx}) [/mm]

>  
> mit f(x)=(sin(x)-cos(x))
>  und [mm]g(h)=\bruch{1}{2}[/mm]
>  
> [mm]y'=\bruch{dy}{dx}=f(x)*g(h)[/mm]
>  [mm]\bruch{dy}{g(h)}=f(x)dx[/mm]
>  [mm]\integral_{}^{}{2*dy}=\integral_{}^{}{sin(x)-cos(x)dx}[/mm]
>  [mm]2y=\bruch{-1}{2}(cos(x)-sin(x))[/mm]
>  [mm]y=\bruch{-1}{4}(cos(x)-sin(x))[/mm]
>  
> Die Lösung soll aber sein:   y=-0,5(cos(x)+sin(x))
>  
> Ich wäre sehr dankbar, wenn mir jemand meinen Fehler
> zeigen kann...


Bezug
                
Bezug
DGL trennbare Variablen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:30 Mo 17.09.2012
Autor: hennes82

Aarrggh...

Danke!

Ich merk immer wieder, dass ich wahnsinnige Lücken bei den Grundlagen habe...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]