www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL mit Runge-Kutta
DGL mit Runge-Kutta < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL mit Runge-Kutta: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:35 So 30.12.2012
Autor: Traumfabrik

Aufgabe
a, geben sie eine Anfangswertaufgabe 1. Ordnung an welche die funktion

f(x)= [mm] e^{-\wurzel{2}x} [/mm] als Lösung besitzt

b, Berechnen sie mit Runge Kutta 4. Ordnung eine Nährung für den Wert y = [mm] e^\frac{\wurzel{2}}{2} [/mm]

Ok. habe Teil a denk ich gelöst und bekomme

[mm] y'+\wurzel{2}y=0 [/mm]

Als Anfangswertbedingung habe ich mal y(0)=1 genommen.

Mein Problem liegt bei b, Runge Kutta kann ich eigentlich, allerdings verwirrt mich die Fragestellung, der Zahlenwert ist ca . 0.49 und ich könnte x [mm] =e^\frac{\wurzel{2}}{2} [/mm] mit dem Verfahren perfekt berechnen, allerdings ist das der Wert von y und ich bin jetzt etwas ratlos und frage mich ob ich das ganze Verfahren quasi " rückabwickeln" muss ???

        
Bezug
DGL mit Runge-Kutta: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Mo 31.12.2012
Autor: Al-Chwarizmi


> a, geben sie eine Anfangswertaufgabe 1. Ordnung an welche
> die funktion
>  
> f(x)= [mm]e^{-\wurzel{2}x}[/mm] als Lösung besitzt
>  
> b, Berechnen sie mit Runge Kutta 4. Ordnung eine Nährung
> für den Wert y = [mm]e^\frac{\wurzel{2}}{2}[/mm]
>  Ok. habe Teil a denk ich gelöst und bekomme
>  
> [mm]y'+\wurzel{2}y=0[/mm]
>  
> Als Anfangswertbedingung habe ich mal y(0)=1 genommen.
>  
> Mein Problem liegt bei b, Runge Kutta kann ich eigentlich,
> allerdings verwirrt mich die Fragestellung, der Zahlenwert
> ist ca . 0.49 und ich könnte x [mm]=e^\frac{\wurzel{2}}{2}[/mm] mit
> dem Verfahren perfekt berechnen, allerdings ist das der
> Wert von y und ich bin jetzt etwas ratlos und frage mich ob
> ich das ganze Verfahren quasi " rückabwickeln" muss ???


Guten Tag,

du sollst ja nicht einen x-Wert berechnen, sondern eine
gute Näherung für den Zahlenwert von  [mm] e^\frac{\wurzel{2}}{2} [/mm]  !

Um diesen mittels RK aus der Anfangswertrechnung zu
bekommen, musst du  $\ [mm] y\left(-\frac{1}{2}\right)$ [/mm]  berechnen, also
die Ableitung y' von der Startstelle  $\ a\ =\ 0$ aus bis
zur Stelle  $\ b\ =\ [mm] -\frac{1}{2}$ [/mm]  integrieren !

LG,   Al-Chwarizmi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]