www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - DGL Lösungsschritt
DGL Lösungsschritt < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL Lösungsschritt: Frage
Status: (Frage) beantwortet Status 
Datum: 19:51 Di 31.05.2005
Autor: kruder77

Hallo,

ich habe folgende Aufgabe:

die DGL x''+2x'+2x=0 besitzt die Lösungen:

[mm] x_{1}=e^{-t}*cos(t) [/mm]
[mm] x_{2}=e^{-t}*sin(t) [/mm]

welche linear unabhängig sind.  [mm] W(x_{1},x_{2})=-e^{-2t} \not= [/mm] 0

bis dahin habe ich noch keine Probleme.

aber wie komme ich von hier zur allgemeinen Lösung?

allgemeine Lösung:
x(t)= [mm] c_{1}x_{1}+c_{2}x_{2}= e^{-t}*(c_{1}*cos(t)+c_{2}*sin(t)) [/mm]

gehe ich einfach davon aus das eine DGL 2.Ordnung immer 2 Lösungsteile und somit auch 2 Konstanten hat und setze nur noch diese ein? Oder gibt es einen anderen Rechenweg?

Vielen Dank
Kruder77





        
Bezug
DGL Lösungsschritt: Lösungen
Status: (Antwort) fertig Status 
Datum: 22:13 Di 31.05.2005
Autor: MathePower

Hallo,

> gehe ich einfach davon aus das eine DGL 2.Ordnung immer 2
> Lösungsteile und somit auch 2 Konstanten hat und setze nur
> noch diese ein? Oder gibt es einen anderen Rechenweg?

eine DGL 2. Ordnung hat immer 2 linear unabhängige Lösungen.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]