www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - DGL, Lösung
DGL, Lösung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL, Lösung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 Sa 11.10.2008
Autor: Kreide

Aufgabe
[mm] y'=(x+y)^{2} [/mm]
substituiere u(x)=x+y(x) [mm] \Rightarrow u'=u^{2}+1 [/mm]

also ist u=tan(x+c)

zu beantwortende Frage: Warum sind dies alle Lösungen?

Hallo, ich weiß nicht so recht, wie man diese Frage beantworten soll.

Dies sind doch alle Lösungen, weil man hier das c in Betracht zieht und so eine Menge Lösungen mit einschließt. Wie kann ich beweisen, dass nur der Tangens diese Ableitung besitzt?

Lg
kreide

PS: mir ist klar, das die allgemeine lösung y=tan(x+c)-x ist

        
Bezug
DGL, Lösung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Sa 11.10.2008
Autor: Al-Chwarizmi


> [mm]y'=(x+y)^{2}[/mm]
>  substituiere u(x)=x+y(x) [mm]\Rightarrow u'=u^{2}+1[/mm]
>  
> also ist u=tan(x+c)
>  
> zu beantwortende Frage: Warum sind dies alle Lösungen?
>  Hallo, ich weiß nicht so recht, wie man diese Frage
> beantworten soll.
>  
> Dies sind doch alle Lösungen, weil man hier das c in
> Betracht zieht und so eine Menge Lösungen mit einschließt.
> Wie kann ich beweisen, dass nur der Tangens diese Ableitung
> besitzt?
>
> Lg
>  kreide
>  
> PS: mir ist klar, das die allgemeine lösung y=tan(x+c)-x
> ist

Hallo Kreide,

die Lösung  "also ist  u=tan(x+c)"  ist doch irgendwie sehr
kurz und steht ohne weitere Begründung da.


Gehen wir von der Gleichung   [mm] u'=u^{2}+1 [/mm]   aus:

       [mm] \bruch{du}{dx}=u^2+1 [/mm]

Man kann sie auch so (separiert) schreiben:

       [mm] \bruch{du}{u^2+1}=dx [/mm]

Beidseitige Integration liefert:

      [m]\ arctan(u)=x+C[/m]

Da drin stecken alle möglichen Lösungen; die einzige
Möglichkeit der Variation liegt in der Wahl der Integra-
tionskonstanten C.

Geht man jetzt zur Gleichung

       [m]\ u\ =\ tan(x+C)[/m]

über, so hat man, weil die Tangensfunktion nicht
injektiv ist, nochmals eine unendliche Vielfalt von
Wahlmöglichkeiten, weil  [mm] tan(x+C)=tan(x+C+z*\pi) [/mm]
für alle [mm] z\in \IZ. [/mm] Aber auch [mm] C+z*\pi [/mm] ist eine Konstante,
und deshalb beinhaltet die Gleichung

       [m]\ u\ =\ tan(x+C)[/m]     [mm] (C\in \IR) [/mm]

nach wie vor alle Lösungen.

Schliesslich sollte man die Substitution rückgängig
machen: Wegen u(x)=x+y(x) haben wir

         [m]\ y(x)\ =\ u(x)-x\ =\ tan(x+C)-x[/m]


LG   Al-Chw.




    
    


Bezug
                
Bezug
DGL, Lösung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:08 Sa 11.10.2008
Autor: Kreide

HAllo Al-Chw.

danke für deine hilfe. ich dachte man kann davon ausgehen, dass man weiß, dass (tan u)'=1+(tan [mm] u)^2 [/mm] ist.
Aber wie du'S gemacht hast ist schon irgendwie besser ;-)
Danke noch mal!
Lg
kreide

Bezug
                        
Bezug
DGL, Lösung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:52 Sa 11.10.2008
Autor: Al-Chwarizmi


> HAllo Al-Chw.
>  
> danke für deine hilfe. ich dachte man kann davon ausgehen,
> dass man weiß, dass (tan u)'=1+(tan [mm]u)^2[/mm] ist.

    Auch wenn man das weiß, ist eben (wie du richtig vermutet
    hast)  nicht von vornherein klar, dass es nicht noch andere
    Funktionen f  mit der Eigenschaft  [mm] f'(x)=1+\left(f(x)\right)^2 [/mm] geben könnte.

> Aber wie du'S gemacht hast ist schon irgendwie besser ;-)
>  Danke noch mal!
>  Lg
>  kreide


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]