www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - DGL Integration
DGL Integration < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:33 Fr 27.05.2011
Autor: Frankstar

Aufgabe
bin im Buch auf folgende Aufgabe gestoßen:

[mm] \integral\bruch{dy}{y} [/mm] = [mm] \integral\bruch{2dx}{x^{2}-1} [/mm]

laut Buch ist die Lösung nun:

ln|y| = [mm] ln|\bruch{x-1}{x+1}|+C [/mm]


, aber wenn ich am Anfang die recht Seite integriere, dann mach ich das über ne Substitution und komme dann auf:

[mm] u=x^{2} [/mm] - 1

[mm] \Rightarrow 2\integral\bruch{1}{x^{2}-1}dx [/mm]

[mm] \Rightarrow \integral\bruch{du}{ux} [/mm]


        
Bezug
DGL Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Fr 27.05.2011
Autor: schachuzipus

Hallo Frankstar,


> bin im Buch auf folgende Aufgabe gestoßen:
>  
> [mm]\integral\bruch{dy}{y}[/mm] = [mm]\integral\bruch{2dx}{x^{2}-1}[/mm]
>  laut Buch ist die Lösung nun:
>  
> ln|y| = [mm]ln|\bruch{x-1}{x+1}|+C[/mm]
>  
>
> , aber wenn ich am Anfang die recht Seite integriere, dann
> mach ich das über ne Substitution und komme dann auf:
>  
> [mm]u=x^{2}[/mm] - 1
>  
> [mm]\Rightarrow 2\integral\bruch{1}{x^{2}-1}dx[/mm]
>  
> [mm]\Rightarrow \integral\bruch{du}{ux}[/mm]

Da hast du 2 Variablen im Integral ...

Nicht gut. Was soll das geben?

Integriere [mm]\int{\frac{1}{x^2-1} \ dx}=\int{\frac{1}{(x+1)(x-1)} \ dx}[/mm], indem du zunächst eine Partialbruchzerlegung machst:

Ansatz: [mm]\frac{1}{(x+1)(x-1)}=\frac{A}{x+1}+\frac{B}{x-1}[/mm]

Dann kannst du das Integral schreiben als Summe zweier einfacher Integrale ...

>  

Gruß

schachuzipus


Bezug
                
Bezug
DGL Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:44 Fr 27.05.2011
Autor: Frankstar

ja danke vorab, integrier ich das jetzt einzeln?



Bezug
                        
Bezug
DGL Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Fr 27.05.2011
Autor: fred97


> ja danke vorab, integrier ich das jetzt einzeln?

Wenn Du die rechte Seite in

                  $ [mm] \frac{1}{(x+1)(x-1)}=\frac{A}{x+1}+\frac{B}{x-1} [/mm] $

meinst, ja.

FRED

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]