www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL 2ter Ordnung
DGL 2ter Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 2ter Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:28 So 13.12.2009
Autor: Unk

Aufgabe
Gegeben ist [mm] y''(t)+\omega_{0}^{2}y(t)=E\m{sin}(\omega [/mm] t).
(i) Ermitteln Sie die Lösung, wenn [mm] \omega\neq \omega_{0}. [/mm]
(ii) Ermitteln Sie die Lösung, wenn [mm] \omega=\omega_{0}. [/mm]

Hallo,

ich hab schon etwas rumgerechnet.
Zum ersten Teil folgendes:
Die Lösung des homogenen Teils liefert mir:
[mm] y_{1}(t)=\mbox{sin}(\omega_{0}t) [/mm] und [mm] y_{2}(t)=\mbox{cos}(\omega_{0}t). [/mm]
Dann kommt der etwas kompliziertere Teil der Lösung des inhomogenen Teils:
Variation der Konstanten liefert mir: [mm] C_{1}(t)&=&-\int\frac{\mbox{cos}(\omega_{0}t)E\mbox{sin}(\omega t)}{-\omega_{0}}dt\\&=&\frac{E}{\omega_{0}}\int\mbox{cos}(\omega_{0}t)\mbox{sin}(\omega [/mm] t)dt und [mm] C_{2}(t)&=&\int\frac{\mbox{sin}(\omega_{0}t)E\mbox{sin}(\omega t)}{-\omega_{0}}dt\\&=&-\frac{E}{\omega_{0}}\int\mbox{sin}(\omega_{0}t)\mbox{sin}(\omega [/mm] t)dt.
Stimmts so weit? Sollte ich die integrale noch irgendwie ausrechnen?

Im zweiten Teil läuft es auf das gleiche hinaus, nur dass sich die Lösung des speziellen Teils etwas vereinfacht, da [mm] \omega=\omega_0. [/mm]


        
Bezug
DGL 2ter Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 So 13.12.2009
Autor: Salamence

Ja, so habe ich es auch, du solltest es allerdings noch integrieren. Geht am besten, wenn man die Additionstheoreme verwendet.
[mm] cos(\omega_{0}*t)*sin(\omega*t)=\bruch{1}{2}*(sin(\omega*t+\omega_{0}*t)+sin(\omega*t-\omega_{0}*t) [/mm]
[mm] sin(\omega*t)*sin(\omega_{0}*t)=\bruch{1}{2}*(cos(\omega*t-\omega{0}*t)-cos(\omega*t+\omega_{0}*t) [/mm]
Beim zweiten Teil ist es im Prinzip einfacher, allerdings find ich die Integration da schon etwas schwerer.

Bezug
                
Bezug
DGL 2ter Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:27 So 13.12.2009
Autor: Unk

Ok das mit dem Integrieren akzeptiere ich, aber trotzdem steht dann am Ende bei mir ein ziemlich langer Term als Gesamtlösung, oder habe ich was übersehen und es kürzt sich so gut wie alles weg?
Man bekommt dann für [mm] C_{1}(t)=&-\frac{1}{2}\frac{E}{\omega_{0}}\cdot\left[\frac{\mbox{cos}((\omega+\omega_{0})t)}{\omega+\omega_{0}}+\frac{\mbox{cos}((\omega-\omega_{0})t)}{\omega-\omega_{0}}\right] [/mm] und
[mm] C_{2}(t)=-\frac{1}{2}\frac{E}{\omega_{0}}\left[\frac{\mbox{sin}((\omega-\omega_{0})t)}{\omega-\omega_{0}}-\frac{\mbox{sin}((\omega+\omega_{0})t)}{\omega+\omega_{0}}\right]. [/mm]

Gibts da noch eine extreme Vereinfachung?
Mal abgesehen davon, dass ich langsam keine Lust mehr hab daran rumzurechnen...

Bezug
                        
Bezug
DGL 2ter Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:27 So 13.12.2009
Autor: Salamence

Man könnte das alles (die allgemeine Lösung) auf den gleichen Nenner bringen, nämlich auf [mm] \omega^{2}-\omega_{0}^{2} [/mm] aber wirklich kürzer wird es dadurch nicht. Wenn ich mich nicht verrechnet habe, stünde dann
[mm] -sin(\omega*t)*E+(\omega^{2}-\omega_{0}^{2})*C_{2}*cos(\omega_{0}*t)+(\omega^{2}-\omega_{0}^{2})*C_{1}*sin(\omega_{0}*t) [/mm] im Zähler.
Vergleichsweise ist das doch recht kurz...
Besonders wenn ich daran denke, was mir das CAS als Lösung ausgespuckt hat.
Ich schreibs aber auch nicht vereinfacht auf, dann muss man ja noch die ganzen Umformungen legitimieren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]