www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - DGL 2. Ordnung
DGL 2. Ordnung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 2. Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:40 Mo 17.06.2013
Autor: Kasperkopf

Aufgabe
(Gedämpfte Schwingungen) Bestimmen Sie die reellen Lösungen [mm] \phi(t) [/mm] von [mm] y''+2\mu y'+\omega_0^2y=0, \mu,\omega_0 \in \mathbb{R},\ \mu,\omega [/mm] >0 und diskutieren Sie ihr Verhalten für t [mm] \to \infty [/mm] in Abhängigkeit von [mm] \mu [/mm] und [mm] \omega_0. [/mm]

Hallo,

ich habe leider Probleme mit der Aufgabe. Erst mal weiß ich nicht so genau, wie ich hier vorgehen muss. Kann ich das einfach wie eine 'normale' DGL lösen oder geht das hier anders?
Und was genau ist hier mit dem Verhalten gemeint?

Wäre für einen Ansatz sehr dankbar.




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
DGL 2. Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Mo 17.06.2013
Autor: schachuzipus

Hallo Kasperkopf,


> (Gedämpfte Schwingungen) Bestimmen Sie die reellen
> Lösungen [mm]\phi(t)[/mm] von [mm]y''+2\mu y'+\omega_0^2y=0, \mu,\omega_0 \in \mathbb{R},\ \mu,\omega[/mm]
> >0 und diskutieren Sie ihr Verhalten für t [mm]\to \infty[/mm] in
> Abhängigkeit von [mm]\mu[/mm] und [mm]\omega_0.[/mm]
> Hallo,

>

> ich habe leider Probleme mit der Aufgabe. Erst mal weiß
> ich nicht so genau, wie ich hier vorgehen muss. Kann ich
> das einfach wie eine 'normale' DGL lösen oder geht das
> hier anders?

Nö, ganz normal ...

Stelle die char. Gleichung auf:

[mm]\lambda^2+2\mu\lambda+\omega_0^2=0[/mm] usw.

Dann musst du Fallunterscheidungen machen anhand des auftretenden Wurzelterms.

1.Fall: [mm]\mu \ < \ \omega_0[/mm]

2.Fall: [mm]\mu \ = \ \omega_0[/mm]

3.Fall: [mm]\mu \ > \ \omega_0[/mm]



> Und was genau ist hier mit dem Verhalten gemeint?

Nun, bestimme die Lösungsfunktion in diesen Fällen und schaue, welches Verhalten ihr Graph für [mm]t\to\infty[/mm] zeigt.


>

> Wäre für einen Ansatz sehr dankbar.

>
>
>
>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]