www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL 1.Ordnung
DGL 1.Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL 1.Ordnung: Aufklärung zur Lösung
Status: (Frage) beantwortet Status 
Datum: 12:03 Sa 09.10.2010
Autor: monstre123

Aufgabe
Beispiel: Gegeben ist die Ellipsenschar [mm] \bruch{x^{2}}{2C}+\bruch{y^{2}}{C}=1 [/mm] , C>0 ; gesucht ist die Dgl ihrer Orthogonaltrajektorien.

Aus der Schargleichung ergibt sich [mm] x^{2}+2y^{2}=2C [/mm] ;

implizite Differenziation liefert die Dgl der Schar: 2x+4yy'=0, oder, für [mm] y\not=0, y'=-\bruch{x}{2y}. [/mm]

Die Dgl der Orthogonaltrajektorien ist also [mm] y'=\bruch{2y}{x} [/mm]

Hallo,
ich hätte ein Frage zum Beispiel:

Wie kommt man von [mm] x^{2}+2y^{2}=2C [/mm]  zu  2x+4yy'=0 ?  Hier wird nach x und y differenziert und so kommt das 2x und 4y zustande und die konstante fällt weg, aber woher kommt das y' ?

[mm] y(x,y)=x^{2}+2y^{2}-2C [/mm]

y'(x,y)=2x+4y

???

Danke vorab.

        
Bezug
DGL 1.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Sa 09.10.2010
Autor: abakus


> Beispiel: Gegeben ist die Ellipsenschar
> [mm]\bruch{x^{2}}{2C}+\bruch{y^{2}}{C}=1[/mm] , C>0 ; gesucht ist
> die Dgl ihrer Orthogonaltrajektorien.
>
> Aus der Schargleichung ergibt sich [mm]x^{2}+2y^{2}=2C[/mm] ;
>
> implizite Differenziation liefert die Dgl der Schar:
> 2x+4yy'=0, oder, für [mm]y\not=0, y'=-\bruch{x}{2y}.[/mm]
>  
> Die Dgl der Orthogonaltrajektorien ist also
> [mm]y'=\bruch{2y}{x}[/mm]
>  Hallo,
> ich hätte ein Frage zum Beispiel:
>
> Wie kommt man von [mm]x^{2}+2y^{2}=2C[/mm]  zu  2x+4yy'=0 ?  Hier
> wird nach x und y differenziert und so kommt das 2x und 4y

Nein, hier wird nur nach x abgeleitet.
Da y von x abhängt, muss [mm] (y)^2 [/mm] nach Kettenregel abgeleitet werden.
Die äußere Ableitung von [mm] y^2 [/mm] ist 2y, und die innere Ableitung, also die Ableitung von y, ist y'.
Gruß Abakus

> zustande und die konstante fällt weg, aber woher kommt das
> y' ?
>
> [mm]y(x,y)=x^{2}+2y^{2}-2C[/mm]
>  
> y'(x,y)=2x+4y
>  
> ???
>  
> Danke vorab.


Bezug
                
Bezug
DGL 1.Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:33 Sa 09.10.2010
Autor: monstre123


> > Beispiel: Gegeben ist die Ellipsenschar
> > [mm]\bruch{x^{2}}{2C}+\bruch{y^{2}}{C}=1[/mm] , C>0 ; gesucht ist
> > die Dgl ihrer Orthogonaltrajektorien.
> >
> > Aus der Schargleichung ergibt sich [mm]x^{2}+2y^{2}=2C[/mm] ;
> >
> > implizite Differenziation liefert die Dgl der Schar:
> > 2x+4yy'=0, oder, für [mm]y\not=0, y'=-\bruch{x}{2y}.[/mm]
>  >  
> > Die Dgl der Orthogonaltrajektorien ist also
> > [mm]y'=\bruch{2y}{x}[/mm]
>  >  Hallo,
> > ich hätte ein Frage zum Beispiel:
> >
> > Wie kommt man von [mm]x^{2}+2y^{2}=2C[/mm]  zu  2x+4yy'=0 ?  Hier
> > wird nach x und y differenziert und so kommt das 2x und 4y
> Nein, hier wird nur nach x abgeleitet.
>  Da y von x abhängt, muss [mm](y)^2[/mm] nach Kettenregel
> abgeleitet werden.
>  Die äußere Ableitung von [mm]y^2[/mm] ist 2y, und die innere
> Ableitung, also die Ableitung von y, ist y'.
>  Gruß Abakus

Wenn es nach x-abgeleitet wird, muss der zweite Term auch wegfallen und wir hätten:

[mm] f(x,y)=x^{2}+2y^{2}-2C [/mm]

f'(x,y)=2x


>  > zustande und die konstante fällt weg, aber woher kommt

> das
> > y' ?
> >
> > [mm]y(x,y)=x^{2}+2y^{2}-2C[/mm]
>  >  
> > y'(x,y)=2x+4y
>  >  
> > ???
>  >  
> > Danke vorab.
>  


Bezug
                        
Bezug
DGL 1.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 Sa 09.10.2010
Autor: leduart

Hallo monstre
Du versthst was falsch. da stand doch nicht y ist eine konstante, sondern y ist ne Funktion von x, also y ist nur ne Abkürzung für y(x)
Schreib vielleicht statt y lieber f(x)
dann hast du statt $ [mm] x^{2}+2y^{2}=2C [/mm] $
$ [mm] x^{2}+2*f^{2}(x)=2C [/mm] $
spätesten jetz solltest du merken , wie man das ableitet.
die Ableitung von [mm] f^2(x) (f^2(x))'=2f(x)*f'(x) [/mm] nach Kettenregel solltest du wissen.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]