www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - DGL
DGL < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL: Problem bei partikulärer Lsg.
Status: (Frage) beantwortet Status 
Datum: 19:17 Di 26.08.2008
Autor: BlubbBlubb

Aufgabe
[mm] y'+x^2*y=2*x^2 [/mm]


ich versuche die gleichung mit der variation der konstanten zu lösen.

1.homogene Lösung:

[mm] y=K*e^{-\integral{f(x)dx}} [/mm]

[mm] y=K*e^{-\integral{x^2dx}} [/mm]

[mm] y=K*e^{-\bruch{1}{3}*x^3} [/mm]


2.partikuläre Lösung:

K [mm] \rightarrow [/mm] K(x)

[mm] y=K(x)*e^{-\bruch{1}{3}*x^3} [/mm]

[mm] y'=K'(x)*e^{-\bruch{1}{3}*x^3} [/mm] + [mm] K(x)*e^{-\bruch{1}{3}*x^3}*(-x^2) [/mm]

[mm] K'(x)*e^{-\bruch{1}{3}*x^3} -x^2*K(x)*^{-\bruch{1}{3}*x^3}+x^2*K(x)*e^{-\bruch{1}{3}*x^3}=2x^2 [/mm]

[mm] K'(x)*e^{-\bruch{1}{3}*x^3}=2x^2 [/mm]

[mm] K'(x)=2x^2*e^{\bruch{1}{3}*x^3} [/mm]

nun wollte ich die partielle integration anwenden , aber wie leite ich

[mm] e^{\bruch{1}{3}*x^3} [/mm]

auf?

        
Bezug
DGL: Substitution
Status: (Antwort) fertig Status 
Datum: 19:19 Di 26.08.2008
Autor: Loddar

Hallo BlubbBlubb!


Substituiere hier: $u \ := \ [mm] \bruch{1}{3}*x^3$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Di 26.08.2008
Autor: BlubbBlubb


> [mm]y'+x^2*y=2*x^2[/mm]
>  
>
> ich versuche die gleichung mit der variation der konstanten
> zu lösen.
>  
> 1.homogene Lösung:
>  
> [mm]y=K*e^{-\integral{f(x)dx}}[/mm]
>  
> [mm]y=K*e^{-\integral{x^2dx}}[/mm]
>  
> [mm]y=K*e^{-\bruch{1}{3}*x^3}[/mm]
>
>
> 2.partikuläre Lösung:
>  
> K [mm]\rightarrow[/mm] K(x)
>  
> [mm]y=K(x)*e^{-\bruch{1}{3}*x^3}[/mm]
>  
> [mm]y'=K'(x)*e^{-\bruch{1}{3}*x^3}[/mm] +
> [mm]K(x)*e^{-\bruch{1}{3}*x^3}*(-x^2)[/mm]
>  
> [mm]K'(x)*e^{-\bruch{1}{3}*x^3} -x^2*K(x)*^{-\bruch{1}{3}*x^3}+x^2*K(x)*e^{-\bruch{1}{3}*x^3}=2x^2[/mm]
>  
> [mm]K'(x)*e^{-\bruch{1}{3}*x^3}=2x^2[/mm]
>  
> [mm]K'(x)=2x^2*e^{\bruch{1}{3}*x^3}[/mm]
>  
> nun wollte ich die partielle integration anwenden , aber
> wie leite ich
>
> [mm]e^{\bruch{1}{3}*x^3}[/mm]
>  
> auf?  


also gut dann würde es weiter gehen:

[mm] z=\bruch{1}{3}*x^3 [/mm]

[mm] \bruch{dz}{dx}=x^2 [/mm]

[mm] dx=\bruch{dz}{x^2} [/mm]


[mm] K=\integral{2x^2*e^{\bruch{1}{3}*x^3} dx}=\integral{2x^2*e^z*\bruch{dz}{x^2}}=2*\integral{e^z dz}=2e^z=2e^{\bruch{1}{3}x^3} [/mm]

[mm] y=K*e^{-\bruch{1}{3}*x^3}=2*e^{\bruch{1}{3}*x^3} *e^{-\bruch{1}{3}*x^3}=2 [/mm]

somit wäre die allgemeine lösung dann

y(x)=2

richtig?

Bezug
                        
Bezug
DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 Di 26.08.2008
Autor: schachuzipus

Hallo BlubbBlubb,

> > [mm]y'+x^2*y=2*x^2[/mm]
>  >  
> >
> > ich versuche die gleichung mit der variation der konstanten
> > zu lösen.
>  >  
> > 1.homogene Lösung:
>  >  
> > [mm]y=K*e^{-\integral{f(x)dx}}[/mm]
>  >  
> > [mm]y=K*e^{-\integral{x^2dx}}[/mm]
>  >  
> > [mm]y=K*e^{-\bruch{1}{3}*x^3}[/mm]
> >
> >
> > 2.partikuläre Lösung:
>  >  
> > K [mm]\rightarrow[/mm] K(x)
>  >  
> > [mm]y=K(x)*e^{-\bruch{1}{3}*x^3}[/mm]
>  >  
> > [mm]y'=K'(x)*e^{-\bruch{1}{3}*x^3}[/mm] +
> > [mm]K(x)*e^{-\bruch{1}{3}*x^3}*(-x^2)[/mm]
>  >  
> > [mm]K'(x)*e^{-\bruch{1}{3}*x^3} -x^2*K(x)*^{-\bruch{1}{3}*x^3}+x^2*K(x)*e^{-\bruch{1}{3}*x^3}=2x^2[/mm]
>  
> >  

> > [mm]K'(x)*e^{-\bruch{1}{3}*x^3}=2x^2[/mm]
>  >  
> > [mm]K'(x)=2x^2*e^{\bruch{1}{3}*x^3}[/mm]
>  >  
> > nun wollte ich die partielle integration anwenden , aber
> > wie leite ich
> >
> > [mm]e^{\bruch{1}{3}*x^3}[/mm]
>  >  
> > auf?  
>
>
> also gut dann würde es weiter gehen:
>  
> [mm]z=\bruch{1}{3}*x^3[/mm]
>  
> [mm]\bruch{dz}{dx}=x^2[/mm]
>  
> [mm]dx=\bruch{dz}{x^2}[/mm]
>
>
> [mm]K=\integral{2x^2*e^{\bruch{1}{3}*x^3} dx}=\integral{2x^2*e^z*\bruch{dz}{x^2}}=2*\integral{e^z dz}=2e^z=2e^{\bruch{1}{3}x^3}[/mm]
>
> [mm]y=K*e^{-\bruch{1}{3}*x^3}=2*e^{\bruch{1}{3}*x^3} *e^{-\bruch{1}{3}*x^3}=2[/mm]
>  
> somit wäre die allgemeine lösung dann
>  
> y(x)=2

das ist eine spezielle (partikuläre) Lösung [mm] $y_{part}(x)$ [/mm]

>
> richtig?


Das hast du alles richtig gerechnet, aber die allg. Lösung dieser linearen gewöhnlichen Dgl ist doch [mm] $y(x)=y_{part}(x)+y_{hom}(x)$ [/mm]

Also hier: [mm] $y(x)=2+K\cdot{}e^{-\frac{1}{3}x^3}$ [/mm]

Probe durch Ableiten und Einsetzen in die Dgl.

LG

schachuzipus

Bezug
                                
Bezug
DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:16 Mi 27.08.2008
Autor: BlubbBlubb

ja stimmt hast recht. thx for helping

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]