www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - DGL
DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Mo 07.12.2015
Autor: Ice-Man

Aufgabe
Lösen sie folgende DGL.

[mm] y^{{4}}+2y^{''}+y=8sinx+x^{2}+4 [/mm]


Hallo,

ich habe leider mal wieder ein Problem beim lösen dieser Gleichung.
Ich weis leider nicht wie ich auf die Lösung [mm] y=(c_{1}+c_{2}x)sinx+(c_{3}+c_{4})cosx+x^{2}(1-sinx) [/mm] komme.

Mein Vorgehen (bis zu dem Punkt wo ich nicht weiter weis) ist wie folgt.

Ansatz: [mm] y=e^{\lambda x} [/mm]

[mm] \lambda^{4}+2\lambda^{2}+1=0 [/mm]

Substituieren, [mm] z=\lambda^{2} [/mm]

[mm] z^{2}+2z+1=0 [/mm]

Ausrechen, und anschließend Rücksubstituieren,

[mm] \lambda_{1,2}=j [/mm]
[mm] \lambda_{3,4}=j [/mm]

Mit diesen Werten bekomme ich ja den Sinus und Cosinus Ausdruck, aber jetzt weis ich nicht woher der Term [mm] x^{2}(1-sinx) [/mm] kommt.

Und jetzt weis ich nicht weiter.

Würde mir, für den Fall das mein Vorgehen bis jetzt richtig sein sollte, evtl. bitte jemand einen Tipp geben wie ich weiterrechnen soll?

Vielen Dank schon einmal

        
Bezug
DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:35 Mo 07.12.2015
Autor: rmix22

deleted
Bezug
                
Bezug
DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:56 Mo 07.12.2015
Autor: Ice-Man

?

Bezug
                        
Bezug
DGL: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:32 Mo 07.12.2015
Autor: rmix22


> ?

Ich hatte deine Angabe nur überflogen, die Angabe auf den ersten Blick für eine DGL 2.Ordnung gehalten und entsprechend geantwortet.
Es ist hier nicht möglich, eigene Postings zu löschen - auch dann nicht, wenn noch niemand darauf reagiert hat.
Daher habe ich es eben auf "deleted" editiert.

Du kannst die "Urfassung" noch einsehen, wenn du auf das in Klammer stehende "V1" klickst. Teile der Antwort sind ja trotzdem gültig.

RMix


Bezug
        
Bezug
DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Mo 07.12.2015
Autor: fred97


> Lösen sie folgende DGL.
>  
> [mm]y^{{4}}+2y^{''}+y=8sinx+x^{2}+4[/mm]
>  
> Hallo,
>  
> ich habe leider mal wieder ein Problem beim lösen dieser
> Gleichung.
> Ich weis leider nicht wie ich auf die Lösung
> [mm]y=(c_{1}+c_{2}x)sinx+(c_{3}+c_{4})cosx+x^{2}(1-sinx)[/mm]

Nach dem [mm] c_4 [/mm] fehlt ein x ! Also

[mm]y=(c_{1}+c_{2}x)sinx+(c_{3}+c_{4}x)cosx+x^{2}(1-sinx)[/mm]

> komme.
>  
> Mein Vorgehen (bis zu dem Punkt wo ich nicht weiter weis)
> ist wie folgt.
>
> Ansatz: [mm]y=e^{\lambda x}[/mm]

Das ist der Ansatz dür die allgemeine Lösung der zugeh. homogenen Gleichung

[mm] y^{{(4)}}+2y^{''}+y=0. [/mm]


>  
> [mm]\lambda^{4}+2\lambda^{2}+1=0[/mm]
>  
> Substituieren, [mm]z=\lambda^{2}[/mm]
>  
> [mm]z^{2}+2z+1=0[/mm]
>  
> Ausrechen, und anschließend Rücksubstituieren,
>  
> [mm]\lambda_{1,2}=j[/mm]
>  [mm]\lambda_{3,4}=j[/mm]

Das stimmt nicht. Es ist

[mm]\lambda^{4}+2\lambda^{2}+1=(\lambda-j)^2(\lambda +j)^2[/mm]

Die char. Gl. hat also die Lösungen j und -j , jeweils mit der Vielfachheit 2.

Damit lautet die allg. Kösung der hom. Gleichung so:

[mm] y=(c_{1}+c_{2}x)sinx+(c_{3}+c_{4}x)cosx [/mm]

FRED

>
> Mit diesen Werten bekomme ich ja den Sinus und Cosinus
> Ausdruck, aber jetzt weis ich nicht woher der Term
> [mm]x^{2}(1-sinx)[/mm] kommt.
>  
> Und jetzt weis ich nicht weiter.
>  
> Würde mir, für den Fall das mein Vorgehen bis jetzt
> richtig sein sollte, evtl. bitte jemand einen Tipp geben
> wie ich weiterrechnen soll?
>  
> Vielen Dank schon einmal


Bezug
                
Bezug
DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:25 Mo 07.12.2015
Autor: Ice-Man

Vielen Dank erst einmal.

Das verstehe ich ja noch irgendwo, bzw. es leuchtet mir alles ein.

Nur mir fehlt jetzt der Ansatz für die partikuläre Lösung.
Das wollte ich mit dem Koeffizientenvergleich tun.
Nur leider tue ich mich da schwer.
Oder ist das der vollkommen falsche Lösungsansatz?

Bezug
                        
Bezug
DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 00:51 Mi 09.12.2015
Autor: leduart

Hallo
was meinst du mit Koeffizientenvergleich?
anasatz nach Art des ihn. Teils. da sinx und x*sin(x) schon Lösungen der hom. dgl. sind ist der ansatz [mm] Ax^2sin(x)+Bx^2(cos(x) [/mm] für den sin Teil, für den [mm] x^2+4 [/mm] Teil eben Ax^^2+B
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]