Coriolisbeschleunigung < Maschinenbau < Ingenieurwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:57 Fr 05.11.2010 | Autor: | janmoda |
Hallo,
die absolute Relativbeschleunigung lässt sich schreiben als
[mm]\vec{a}=\vec{R''}+\vec{\omega'}\times\vec{p}+\vec{\omega}\times\vec{p'}+\vec{\omega}\times\vec{v_{rel}}+[\bruch{d\vec{v_{rel}}}{dt}]_{rel} [/mm]
[mm] (\vec{p} [/mm] beschreibt den Ort des zu betrachtenden Punktes im Relativsystem [mm] \vec{R} [/mm] beschriebt den Ort des Relativsystems im Inertialsystem.)
wobei sich damit die Absoltbeschleunigung auch schreiben lässt als [mm]\vec{a}=\vec{a_{f}}+\vec{a_{c}}+\vec{a_{rel}}[/mm] mit
(Führungsbeschleunigung)
[mm]\vec{a_{f}}=\vec{R''}+\vec{\omega'}\times\vec{p}+\vec{\omega}\times(\vec{\omega}\times\vec{p})[/mm]
(Relativbeschleunigung)
[mm]\vec{a_{rel}}=x''_{rel}\vec{e_{1 rel}}+y''_{rel}\vec{e_{2 rel}}+z''_{rel}\vec{e_{3 rel}}[/mm]
(Coriolisbeschleunigung)
[mm]\vec{a_{c}}=2\vec{\omega}\times\vec{v_{rel}}[/mm]
Ich verstehe nicht wo die 2 vor dem Kreuzprodukt bei der Coriolisbschleunigung herkommt. Wäre großartig, wenn mir jemand weiterhelfen kann.
viele Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:55 Fr 05.11.2010 | Autor: | rainerS |
Hallo!
> Hallo,
>
> die absolute Relativbeschleunigung lässt sich schreiben
> als
>
> [mm]\vec{a}=\vec{R''}+\vec{\omega'}\times\vec{p}+\vec{\omega}\times\vec{p'}+\vec{\omega}\times\vec{v_{rel}}+[\bruch{d\vec{v_{rel}}}{dt}]_{rel}[/mm]
>
> [mm](\vec{p}[/mm] beschreibt den Ort des zu betrachtenden Punktes im
> Relativsystem [mm]\vec{R}[/mm] beschriebt den Ort des Relativsystems
> im Inertialsystem.)
>
> wobei sich damit die Absoltbeschleunigung auch schreiben
> lässt als [mm]\vec{a}=\vec{a_{f}}+\vec{a_{c}}+\vec{a_{rel}}[/mm]
> mit
>
> (Führungsbeschleunigung)
>
> [mm]\vec{a_{f}}=\vec{R''}+\vec{\omega'}\times\vec{p}+\vec{\omega}\times(\vec{\omega}\times\vec{p})[/mm]
>
> (Relativbeschleunigung)
> [mm]\vec{a_{rel}}=x''_{rel}\vec{e_{1 rel}}+y''_{rel}\vec{e_{2 rel}}+z''_{rel}\vec{e_{3 rel}}[/mm]
>
> (Coriolisbeschleunigung)
> [mm]\vec{a_{c}}=2\vec{\omega}\times\vec{v_{rel}}[/mm]
>
> Ich verstehe nicht wo die 2 vor dem Kreuzprodukt bei der
> Coriolisbschleunigung herkommt. Wäre großartig, wenn mir
> jemand weiterhelfen kann.
Das liegt daran, dass
[mm]\left[\bruch{d\vec{v}_{rel}}{dt}\right]_{rel} = \bruch{d\vec{v_{rel}}}{dt} + \omega \times \vec{v}_{rel} [/mm]
ist.
Anschaulich: wie sieht die zeitliche Änderung eines Vektors im Relativsystem aus? Es ist die zeitliche Änderung des Vektor im Inertialsystem [mm] ($\bruch{d\vec{v_{rel}}}{dt}$) [/mm] plus die Veränderung, die der Vektor durch die Bewegung des Relativsystems gegen das Inertialsystem erfährt.
Ich weiss, dass es schwierig ist, sich das vorzustellen. Vielleicht ist es einfacher, wenn du statt der Ableitung den Differenzenquotienten betrachtest. Vergleiche die Geschwindigkeiten im Relativsystem und im Inertialsystem zu zwei Zeitpunkten $t$ und [mm] $t+\Delta [/mm] t$.
Im Inertialsystem hast du zum Beispiel [mm] $\vec{v}$ [/mm] und [mm] $\vec{v}+\Delta\vec{v}$. [/mm] Nimm nun an, dass zum Zeitpunkt t die Geschwindigkeit in Inertialsystem und Relativsystem übereinstimmen, also [mm] $\vec{v}_{rel} =\vec{v}$. [/mm] Zum Zeitpunkt [mm] $t+\Delta [/mm] t$ hat sich aber das Relativsystem um gegen das Inertialsystem um den Winkel [mm] $\vec\omega*\Delta [/mm] t$ weitergedreht, sodass zu diesem Zeitpunkt Geschwindigkeit im Relativsystem näherungsweise
[mm]\vec{v}_{rel} + \Delta\vec{v}_{rel}= \vec{v}+\Delta\vec{v} + \vec\omega \times \vec{v} *\Delta t[/mm]
ist.
Wenn du nun den Differenzenquotienten im Relativsystem bildest, hast du
[mm] \bruch{\Delta\vec{v}_{rel}}{\Delta t} = \bruch{\Delta\vec{v}}{\Delta t} + \vec\omega\times \vec{v} + \dots [/mm],
was im Limes [mm] $\Delta t\to [/mm] 0$ genau die behauptete Identität ergibt.
Viele Grüße
Rainer
|
|
|
|