www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Cholesky-Zerlegung
Cholesky-Zerlegung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cholesky-Zerlegung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:09 Mo 19.11.2007
Autor: larafabian

Aufgabe
  a) Es sei L 2 R(n,n) eine regul¨are untere Dreiecksmatrix. Zeige, dass A := LLt
positiv definit ist.
b) Zeige, dass die Matrix A = (aij)ij 2 R(n,n), gegeben durch
aij := min{i, j} f¨ur 1  i, j  n,
positiv definit ist.
Hinweis: Versuche, eine einfache Formel f¨ur die Cholesky-Zerlegung A = LLt
zu finden.
(

Hallo lieber,

ich habe folgende aufgabe die ich lösen muss, ich weiß zwar daß:
  eine Matrix positiv definit ist wenn alle Hauptminoren größer Null sind  aber ich habe leider kein Ansatz dafür wie ich es zeigen soll.

Danke schon für euere Hilfe.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Cholesky-Zerlegung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Di 20.11.2007
Autor: mathemaduenn

Hallo larafabian,
Ich denke das mit den Hauptminoren eignet sich hier eher schlecht. Versuchs doch mal mit der Definition
pos. definit [mm] \gdw [/mm] $x^TAx>0$ [mm] \forall x\not=0 [/mm]
und schau ob Du da weiterkommst.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]