www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Chinesischer Restsatz
Chinesischer Restsatz < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Chinesischer Restsatz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Fr 16.04.2010
Autor: Fry

Hallo,

ich sitze gerade an dem Beweis des Chinesischen Restsatzes und ich verstehe dabei folgenden Teil des Beweises nicht:

also [mm] a_1,...a_n [/mm] paarweise koprime Ideale in einem Ring R sein.
Dann wurde gezeigt, dass für festes [mm] $j\in\{1,...,n\}$, $d_j\in a_j$ [/mm] und [mm] $e_j\in\bigcap_{i\not=j}a_i [/mm] $ existieren mit [mm] $d_j+e_j=1$. [/mm]

Jetzt verstehe ich aber die Schlußfolgerung daraus nicht.
Warum gilt dann:
[mm] \pi_i(e_j)=1, [/mm] falls $i=j$
und
[mm] \pi_i(e_j)=0, [/mm] falls [mm] i\not=j [/mm]

? (wobei hier [mm] \pi_i [/mm] der kanonische Epimorphismus [mm] R\to R/a_i [/mm] sein soll
mit [mm] x\mapsto x+a_i. [/mm] Ferner nehme ich an, dass mit den Bezeichnungen 1 und 0 wohl [mm] 1+a_i [/mm] und [mm] 0+a_i [/mm] gemeint ist)


Hab mir dazu folgende Gedanken gemacht:
Hab auf die Gleichung [mm] $d_j+e_j=1$ [/mm] den kan. Epim. angewandt und nach [mm] \pi_i(e_j) [/mm] aufgelöst. Wenn i=j, dann ist [mm] d_j+a_i=0+a_i, [/mm] also ist [mm] \pi_i(e_j)=1+a_i. [/mm] Stimmt das ?
Aber warum gilt im anderen Fall, dass das Ergebnis =0 ist ?


Würde mich freuen, wenn ihr mir daweiterhelfen könntet !
Gruß
Fry

        
Bezug
Chinesischer Restsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 Fr 16.04.2010
Autor: mathfunnel

Hallo Fry,

es gilt: [mm] $d_j [/mm] + [mm] e_j [/mm] = 1 [mm] \Rightarrow \pi_j (e_j) [/mm] = [mm] \pi_j [/mm] (1 - [mm] d_j) [/mm] = 1-0 = 1$ und [mm] $\pi_i(e_j) [/mm] = 0$ für $i [mm] \neq [/mm] j$, da [mm] $d_j \in a_j$ [/mm] und [mm] $e_j$ [/mm] in [mm] $\bigcap_{i \neq j}a_i$ [/mm] liegt.

Gruß mathfunnel


Bezug
                
Bezug
Chinesischer Restsatz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:31 Fr 16.04.2010
Autor: Fry

Hey Mathfunnel,

da war die Idee ja richtig : )
Vielen Dank!

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]