www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Chinesischer Restsatz
Chinesischer Restsatz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Chinesischer Restsatz: Korrektur
Status: (Frage) beantwortet Status 
Datum: 09:52 Mi 18.06.2008
Autor: grenife

Aufgabe
Bestimmen Sie die kleinste natürliche Zahl, die bei Division durch 5 den Rest 1, bei Division durch 7 den Rest 2, bei Division durch 11 den Rest 3 hat und durch 13 teilbar ist.

Hallo zusammen,

wäre nett, wenn jemand meine Lösung korrigieren könnte.

Gesucht ist eine Zahl $X$, die das folgende System simultaner Kongruenzen löst:
[mm] $X\equiv [/mm] 1(5)$
[mm] $X\equiv [/mm] 2(7)$
[mm] $X\equiv [/mm] 3(11)$
[mm] $X\equiv [/mm] 0(13)$
Anwendung des chinesischen Restsatzes liefert:
[mm] $m:=5\cdot 7\cdot 11\cdot [/mm] 13=5005$
[mm] $a_1:=\frac{m}{m_1}=\frac{5005}{5}=1001$ [/mm]
[mm] $a_2:=\frac{m}{m_2}=\frac{5005}{7}=715$ [/mm]
[mm] $a_3:=\frac{m}{m_3}=\frac{5005}{11}=455$ [/mm]
[mm] $a_4:=\frac{m}{m_4}=\frac{5005}{13}=385$. [/mm]
Es werden nun Lösungen der folgenden Kongruenzen gesucht:
[mm] $1001X\equiv [/mm] 1(5)$
[mm] $715X\equiv [/mm] 2(7)$
[mm] $455X\equiv [/mm] 3(11)$
[mm] $385X\equiv [/mm] 0(13)$
Für [mm] $x_1:=1$ [/mm] ist 1001 durch 5 mit Rest 1 teilbar.
Für [mm] $x_2:=2$ [/mm] ist 1430 durch 7 mit Rest 2 teilbar.
Für [mm] $x_3:=9$ [/mm] ist 4095 durch 11 mit Rest 3 teilbar.
Für [mm] $x_4:=13$ [/mm] ist 5005 durch 13 teilbar.

Dann ist [mm] $X=1001\cdot [/mm] 1 [mm] +715\cdot [/mm] 2 [mm] +455\cdot [/mm] 9 [mm] +385\cdot [/mm] 13=11531$ eine Lösung des Systems. Da modulo m=5005 gerechnet werden darf, ist 1521 die gesuchte kleinste natürliche Zahl.

Vielen Dank für Eure Hilfe und viele Grüße
Gregor

        
Bezug
Chinesischer Restsatz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:41 Mi 18.06.2008
Autor: Kyrill

Hi,

sieht gut aus!

Gruß

Kyrill

Bezug
        
Bezug
Chinesischer Restsatz: richtig !
Status: (Antwort) fertig Status 
Datum: 10:55 Mi 18.06.2008
Autor: Al-Chwarizmi

[ok]
das Ergebnis stimmt jedenfalls - ich habe mit einem
kleinen Suchprogramm ebenfalls 1521 erhalten

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]