Charakteristisches Polynom < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:24 Mo 24.05.2010 | Autor: | Ayame |
Aufgabe | i) Man zeige, dass das charakteristische Polynom von
[mm] \pmat{ 0 & ... & 0 & c_{0} \\ 1 & ...&0&c_{1}\\ 0 &1...&..&..\\0&..&1&c_{r-1} } [/mm] := A
gleich [mm] (-1)^{r} (t^{r} [/mm] - [mm] c_{r-1}t^{r-1} [/mm] -...- [mm] c_{1}t [/mm] - [mm] c_{0}) [/mm] ist.
ii) Man zeige , dass das charakteristische Polynom, bis auf einen möglichen faktor (-1) , auch das Minimalpolynom ist. |
Als erstes wollte ich die zeilen verschieben, so dass die erste zeile die letzte ist. dadurch müsste sich das vorzteichen der derterminale um einen faktor [mm] (-1)^{r} [/mm] verändern.
[mm] \pmat{ 1 & ...&0&c_{1}\\ 0 &1...&..&..\\0&..&1&c_{r-1}\\ 0 & ... & 0 & c_{0} }
[/mm]
det(A-tE) = [mm] (-1)^{r}det \pmat{ (1-t) & ...&0&c_{1}\\ 0 &(1-t)...&..&..\\0&..&(1-t)&c_{r-1}\\ 0 & ... & 0 & (c_{0}-t) } [/mm] = [mm] (-1)^{r} (1-t)^{r-1} (c_{0}-t)
[/mm]
Aber das stimmt doch nicht mit [mm] (-1)^{r} (t^{r} [/mm] - [mm] c_{r-1}t^{r-1} [/mm] -...- [mm] c_{1}t [/mm] - [mm] c_{0}) [/mm] überrein.
Kann mir hier jemand helfen ?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:32 Di 25.05.2010 | Autor: | Lippel |
Hallo,
du darfst natürlich die Matrix nicht verändern bevor du die t in die Diagonale geschrieben hast.
Ansonsten schau mal hier:
Char Poly = (-1)^r*(t^r...)
Lippel
|
|
|
|