www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Charakteristisches Polynom
Charakteristisches Polynom < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Charakteristisches Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Do 01.05.2008
Autor: Jun-Zhe

Aufgabe
Wir betrachten die Menge X := {A ∈ [mm] M_{K} [/mm] (n, n) | A ist diagonalisierbar uber K}.
                                                                       ̈
Zeigen Sie: A, B ∈ X sind ähnlich genau dann, wenn [mm] P_A [/mm] = [mm] P_B [/mm] .


Hi,

mein HA Partner und ich haben mit dieser Aufgabe im Moment ein ziemliches Problem. Die Hinrichtung haben wir bereits in der Vorlesung gezeigt und das war auch ziemlich einfach, aber bei der Rückrichtung hängen wir etwas. Uns fehlt einfach jeglicher Ansatz.

Was uns außerdem noch verwirrt hat, ist dass auf Wikipedia steht, dass die Umkehrung unserer Behauptung nicht gilt.
http://de.wikipedia.org/wiki/Charakteristisches_Polynom#Eigenschaften

        
Bezug
Charakteristisches Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Do 01.05.2008
Autor: angela.h.b.

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

> Wir betrachten die Menge X := {A ∈ [mm]M_{K}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

(n, n) | A

> ist diagonalisierbar uber K}.
>                                                            
>             ̈
>  Zeigen Sie: A, B ∈ X sind ähnlich genau dann, wenn
> [mm]P_A[/mm] = [mm]P_B[/mm] .
>  
>
> Hi,
>  
> mein HA Partner und ich haben mit dieser Aufgabe im Moment
> ein ziemliches Problem. Die Hinrichtung haben wir bereits
> in der Vorlesung gezeigt und das war auch ziemlich einfach,
> aber bei der Rückrichtung hängen wir etwas. Uns fehlt
> einfach jeglicher Ansatz.
>  
> Was uns außerdem noch verwirrt hat, ist dass auf Wikipedia
> steht, dass die Umkehrung unserer Behauptung nicht gilt.

Hallo,

Ihr müßt bedenken, daß Ihr von vornherein nur Matrizen aus X betrachtet, also solche, die diagonalisierbar sind. Dies dürfte auch den "Widerspruch" zur Wikipedia erklären.

Für die Rückrichtung ist also zu zeigen, daß zwei diagonalisierbare Matrizen A und B, die dasselbe charakteristische Polynom haben, ähnlich sind.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]