www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Cesaro Limes
Cesaro Limes < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cesaro Limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Do 21.11.2013
Autor: Fry

Aufgabe
Sei [mm](X_n)_n[/mm] eine Folge von reellen Zufallsvariablen mit
[mm]\lim_{n\to\infty}X_n=c[/mm] [mm]P[/mm]-fast sicher mit [mm]c\in\mathbb R[/mm]. Dann gilt:

[mm]\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_i=c[/mm] [mm]P[/mm]-fast sicher



Hallo zusammen,

ich hab die Aussage im Internet gefunden und frage mich gerade, wie man das
wohl beweisen könnte. Für reelle Zahlen/deterministische Funktionen gilt die Aussage ja so: http://de.wikipedia.org/wiki/Cauchyscher_Grenzwertsatz

Leider kann man die Aussage ja nicht mithilfe Continious Mapping Theorem
mit dem Zusatz "P-fast sicher" versehen, da die Summe ja nicht (im Limes)
aus endlich vielen Summanden besteht. Komme ansonsten auch nicht weiter.

Hat jemand eine Idee?

Liebe Grüße
Christian

        
Bezug
Cesaro Limes: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 Do 21.11.2013
Autor: Gonozal_IX

Hiho,

was spricht dagegen, dass so zu schreiben?

[mm] $\lim_{n\to\infty} X_n [/mm] = c$ [mm] \IP [/mm] - fast sicher

[mm] $\gdw \lim_{n\to\infty} X_n(\omega) [/mm] = c$ für fast alle [mm] $\omega \in \Omega$ [/mm]

Nun hast du nur noch reelle Zahlenfolgen und damit:

[mm] $\Rightarrow \lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_i(\omega)=c [/mm] $ für fast alle [mm] $\omega \in \Omega$ [/mm]

[mm] $\gdw \lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_i=c [/mm] $ [mm] \IP [/mm] fast sicher.

Gruß,
Gono.

Bezug
                
Bezug
Cesaro Limes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:31 Do 21.11.2013
Autor: Fry

Hey Gono,

danke für deine Antwort!
Verstehe ich das richtig, dass also die Aussage hieraus folgt:

(1)   [mm]1=P(\lim_{n\to\infty}X_n=c)\le P(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_n=c)[/mm]

bzw aus


(2)

 [mm]\lim_{n\to\infty} X_n(\omega) = c[/mm]  für alle [mm]\omega\in N[/mm] (wobei N so, dass[mm]P(N^c)=0[/mm])

 [mm]\Rightarrow \lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_i(\omega)=c[/mm]  für alle [mm]\omega\in N[/mm]  ?


Ist beides richtig?

LG
Christian

Bezug
                        
Bezug
Cesaro Limes: Antwort
Status: (Antwort) fertig Status 
Datum: 09:46 So 24.11.2013
Autor: Gonozal_IX

Hiho,

>  Verstehe ich das richtig, dass also die Aussage hieraus folgt:
>  
> (1)   [mm]1=P(\lim_{n\to\infty}X_n=c)\le P(\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_n=c)[/mm]

Wie begründest du denn das [mm] $\le$? [/mm] Das ist doch gerade erst das, was du zeigen möchtest, nämlich das gilt:

[mm] $\left\{\lim_{n\to\infty}X_n=c\right\}\subseteq\left\{\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_n=c\right\}$ [/mm]


> bzw aus
>  
>
> (2)
>  
>  [mm]\lim_{n\to\infty} X_n(\omega) = c[/mm]  für alle [mm]\omega\in N[/mm] (wobei N so, dass[mm]P(N^c)=0[/mm])

Ja, sofern die Sigma-Algebra vollständig ist. Schreibe lieber:

für alle [mm]\omega\in \overline{\Omega}[/mm] mit  [mm] $P(\overline{\Omega}) [/mm] = 1$

>  
>  [mm]\Rightarrow \lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}X_i(\omega)=c[/mm] 
> für alle [mm]\omega\in N[/mm]  ?
>  
>
> Ist beides richtig?

Generell ja. Allerdings ist (1) kein Beweis, sondern verwendet ja bereits das, was du zeigen willst.
Weiterhin kannst du aus $P(A) [mm] \le [/mm] P(B)$ ja nicht $A [mm] \subseteq [/mm] B$ folgern (rein formal).

Gruß,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]