www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Cesaro-Summation
Cesaro-Summation < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cesaro-Summation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:04 Mo 15.02.2010
Autor: congo.hoango

Aufgabe
2. Aufgabe (Divergente Reihen, Cesaro-Summation)
i) Berechnen Sie die (C1)-Summe der (divergenten) Reihe [mm] \summe_{k=0}^{\infty}i^k [/mm]
ii) Betrachten Sie nun das Cauchy-Produkt dieser Reihe mit sich selbst, also [mm] (\summe_{k=0}^{\infty}i^k)(\summe_{k=0}^{\infty}i^k) [/mm]
Bestimmen Sie die Häufungspunkte der zugehörigen Folge von Partialsummen und berechnen Sie die
(C2)-Summe des Cauchy-Produktes.

Hallo,

also den ersten Teil der Aufgabe habe ich hinbekommen, aber bei ii) habe ich keine Ahnung wie die zweite Cesarosumme aussieht. Ich habe leider auch nichts darüber in meinem Skript gefunden.

Also die Formel für die (C1)-Summe lautet:

[mm] c^1_n=\bruch{1}{n+1}\summe_{k=0}^{n}s_k [/mm]

Dabei sind die [mm] s_k [/mm] die Partialsummen der Reihe.

Und das Cauchyprodukt ergibt:

[mm] \summe_{n=0}^{\infty}(-1)^n(n+1) [/mm]

Hierbei hat die zugehörige Folge der Partialsummen keine Häufungspunkte.

Wie gesagt, weiß ich nicht wie ich nun die (C2)-Summe berechnen soll.
Wäre echt super, wenn mir da jemand weiterhelfen kann.

Lieben Gruß
congo

        
Bezug
Cesaro-Summation: Antwort
Status: (Antwort) fertig Status 
Datum: 11:47 Mo 15.02.2010
Autor: fred97


> 2. Aufgabe (Divergente Reihen, Cesaro-Summation)
>  i) Berechnen Sie die (C1)-Summe der (divergenten) Reihe
> [mm]\summe_{k=0}^{\infty}i^k[/mm]
>  ii) Betrachten Sie nun das Cauchy-Produkt dieser Reihe mit
> sich selbst, also
> [mm](\summe_{k=0}^{\infty}i^k)(\summe_{k=0}^{\infty}i^k)[/mm]
>  Bestimmen Sie die Häufungspunkte der zugehörigen Folge
> von Partialsummen und berechnen Sie die
>  (C2)-Summe des Cauchy-Produktes.
>  Hallo,
>  
> also den ersten Teil der Aufgabe habe ich hinbekommen, aber
> bei ii) habe ich keine Ahnung wie die zweite Cesarosumme
> aussieht. Ich habe leider auch nichts darüber in meinem
> Skript gefunden.
>
> Also die Formel für die (C1)-Summe lautet:
>
> [mm]c^1_n=\bruch{1}{n+1}\summe_{k=0}^{n}s_k[/mm]
>  
> Dabei sind die [mm]s_k[/mm] die Partialsummen der Reihe.
>  
> Und das Cauchyprodukt ergibt:
>  
> [mm]\summe_{n=0}^{\infty}(-1)^n(n+1)[/mm]
>  
> Hierbei hat die zugehörige Folge der Partialsummen keine
> Häufungspunkte.
>  
> Wie gesagt, weiß ich nicht wie ich nun die (C2)-Summe
> berechnen soll.

Schau mal hier:

http://de.wikipedia.org/wiki/Benutzer:Hagman/divergente_Reihe

FRED


>  Wäre echt super, wenn mir da jemand weiterhelfen kann.
>  
> Lieben Gruß
>  congo


Bezug
                
Bezug
Cesaro-Summation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:27 Mo 15.02.2010
Autor: congo.hoango

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]