www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Cayley-Hamilton
Cayley-Hamilton < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cayley-Hamilton: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:40 Fr 13.03.2009
Autor: qaywertz

Aufgabe
[mm] (E'(\lambda) [/mm] ist der Hauptraum zu Lambda)

Satz von Cayley-Hamilton:
Setz man L [mm] \in [/mm] End(V) in sein char. Polynom [mm] P_{L} [/mm] ein, so erhält man [mm] P_{L}(L)=0 \in [/mm] End(V)

Beweis:
Wir führen den Beweis nur für den Fall durch, dass [mm] P_{L} [/mm] zerfällt, weil bla (Begründung erstmal egal). Offenbar genügt es zu zeigen, dass für jeden EW [mm] \lambda [/mm] von L gilt:

(*) [mm] P_{L}(L)|E'(\lambda) [/mm] = 0

(...)

Hallo!

Ich bin grad am Lernen auf ne mündliche Prüfung und sollte die obige Aussage (bzw den Beweis) verstanden haben.
Damit mir das gelingt, wäre es klasse, wenn ihr mir dazu ein paar Fragen beantworten könntet denn alleine krieg ich das nicht hin:

Was ich daran nicht verstehe ist, warum es ausreicht (*) zu zeigen.

Es gilt doch [mm] E'\subset [/mm] V, aber [mm] P_{L}(L):End(V)\to [/mm] End(V), oder? Dann kann ich doch P gar nicht auf E' einschränken?





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Cayley-Hamilton: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Fr 13.03.2009
Autor: angela.h.b.


> [mm](E'(\lambda)[/mm] ist der Hauptraum zu Lambda)
>  
> Satz von Cayley-Hamilton:
>  Setz man L [mm]\in[/mm] End(V) in sein char. Polynom [mm]P_{L}[/mm] ein, so
> erhält man [mm]P_{L}(L)=0 \in[/mm] End(V)
>  
> Beweis:
>  Wir führen den Beweis nur für den Fall durch, dass [mm]P_{L}[/mm]
> zerfällt, weil bla (Begründung erstmal egal). Offenbar
> genügt es zu zeigen, dass für jeden EW [mm]\lambda[/mm] von L gilt:
>  
> (*) [mm]P_{L}(L)|E'(\lambda)[/mm] = 0
>  
> (...)
>  Hallo!
>  
> Ich bin grad am Lernen auf ne mündliche Prüfung und sollte
> die obige Aussage (bzw den Beweis) verstanden haben.
>  Damit mir das gelingt, wäre es klasse, wenn ihr mir dazu
> ein paar Fragen beantworten könntet denn alleine krieg ich
> das nicht hin:
>  
> Was ich daran nicht verstehe ist, warum es ausreicht (*) zu
> zeigen.
>  
> Es gilt doch [mm]E'\subset[/mm] V, aber [mm]P_{L}(L):End(V)\to[/mm] End(V),
> oder? Dann kann ich doch P gar nicht auf E' einschränken?

Hallo,

was soll denn E' überhaupt sein? Der Eigenraum zu [mm] \lambda? [/mm]


> Es gilt doch [mm]E'\subset[/mm] V, aber [mm]P_{L}(L):End(V)\to[/mm] End(V),

Nein, wenn Du eine lineare Abbildung  [mm] (V\to [/mm] V) ins charakteristische Polynom einsetzt, ist das Ergebnis doch wieder eine lineare Abbildung, die aus dem V in den V abbildet.

Also ist [mm] P_{L}(L)\in [/mm] End(V), was bedeutet, daß [mm] P_{L}(L) [/mm] aus dem V in den V abbildet.

Gruß v. Angela



> oder? Dann kann ich doch P gar nicht auf E' einschränken?


Bezug
                
Bezug
Cayley-Hamilton: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 Fr 13.03.2009
Autor: qaywertz

warum geht denn [mm] P_{L} [/mm] von V [mm] \to [/mm] V?

wenn ich L [mm] \in [/mm] End(V) in [mm] P_{L} [/mm] einsetze, heißt das doch dass End(V) der Urbildraum von [mm] P_{L} [/mm] ist, oder?
L ist ja kein Element aus V, warum sollte ich das dann einsetzen können?

Es gilt doch auch:
[mm] P_{L}(L)=a_{0}id_{V} [/mm] + [mm] a_{1}L [/mm] + [mm] a_{2}L \circ [/mm] L + ...
Dann ergibt diese Summe doch wieder eine lineare Abbildung, oder? Das wäre dann ja wieder kein Element aus V...?


Ist dieses [mm] P_{L} [/mm] vllt irgendeine Schreibweise die ich nicht ganz verstanden habe?

Bezug
                        
Bezug
Cayley-Hamilton: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Fr 13.03.2009
Autor: pelzig


> warum geht denn [mm]P_{L}[/mm] von V [mm]\to[/mm] V?

Das hat keiner behauptet. [mm] $P_L:End(V)\ni \alpha\mapsto \sum_i p_i\alpha^i\in [/mm] End(V)$ ordnet Endomorphismen Endomorphismen zu, also ist [mm] $P_L(L)\in [/mm] End(V)$, m.a.W. [mm] $P_L(L):V\to [/mm] V$.

Gruß, Robert

Bezug
        
Bezug
Cayley-Hamilton: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 Fr 13.03.2009
Autor: pelzig


> Offenbar genügt es zu zeigen, dass für jeden EW [mm]\lambda[/mm] von L gilt:
> (*) [mm]P_{L}(L)|E'(\lambda)[/mm] = 0
>  
> Was ich daran nicht verstehe ist, warum es ausreicht (*) zu zeigen.

Ja weil [mm] $V=\bigoplus_i E'(\lambda_i)$ [/mm] nach dem Zeerlegungslemma. Jeder jedes [mm] $v\in [/mm] V$ liegt lässt sich also als Linearkombination von "Hauptraumvektoren" schreiben.

> Es gilt doch [mm]E'\subset[/mm] V, aber [mm]P_{L}(L):End(V)\to[/mm] End(V),
> oder? Dann kann ich doch P gar nicht auf E' einschränken?

Wie Angela, schon sagte: [mm] $P_L(L)\in [/mm] End(V)$, d.h. [mm] $P_L(L):V\to [/mm] V$.

Gruß, Robert

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]