www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Cauchyfolge
Cauchyfolge < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchyfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:26 Fr 05.11.2010
Autor: jacob17

Hallo zusammen,
Meine Frage:

Sei C°([0,1],IR) mit der durch [mm] d(f,g):=(\integral_{0}^{1}{(f(x)-g(x))^2 dx})^{1/2} [/mm] definierten Metrik gegeben. z.Z ist nun dass dieser Raum nicht vollständig ist.
Meine Idee:
Hierzu betrachte man eine stetige Funktionenfolge aus  C°([0,1],IR) die z.B wäre
[mm] f_n(x)= \{0 x<\bruch{1}{2}-\bruch{1}{n} ; 1 für x>\bruch{1}{2}+\bruch{1}{n} und sonst \bruch{n}{2}x+\bruch{1}{2}-\bruch{n}{4}} [/mm]
Ok nun möchte ich das in meine Abstandsfunktion einsetzen also [mm] d(f_m,f_n) [/mm] für zwei beliebige m,n berechnen. Jedoch weiß ich jetzt nicht wie man das macht da das ja abschnittsweise definierte Folgen von Funktionen sind. Hat jemand ne Idee? Könnt ihr mir auch verraten wie man abschnittsweise def. Funktionen richtig hinschreibt. Die Darstellung sieht nämlich schrecklich aus
jacob

        
Bezug
Cauchyfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 10:45 Fr 05.11.2010
Autor: Gonozal_IX

Huhu,

du brauchst keine gestückelten Funktionen.....

nimm mal [mm] $f_n(x) [/mm] = [mm] x^n$ [/mm]

MFG,
Gono.

Bezug
                
Bezug
Cauchyfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:20 Fr 05.11.2010
Autor: jacob17

Man betrachtet also die Funktionenfolge [mm] f_n(x) [/mm] = [mm] x^n [/mm] die stetig ist somit Element des Metrischen Raumes [mm] C^o([0,1],IR) [/mm] jetzt muss man doch zeigen dass diese Funktionenfolge auch Cauchyfolge ist jedoch bzgl. der gegebenen Metrik, da diese ja in genau diesem Raum Cauchyfolge sein soll. Dann stellt sich nur noch die Frage gegen welche Funktion diese Folge bzgl. der gegebenen Metrik konvergiert oder?

Bezug
                        
Bezug
Cauchyfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Fr 05.11.2010
Autor: Gonozal_IX

Huhu,

nein, die Folge konvergiert nicht, da es kein Element des Raumes gibt, wogegen sie konvergieren sollte, obwohl sie eine Cauchy-Folge ist (hast du das gezeigt)...... du sollst doch zeigen, dass der Raum NICHT vollständig ist.
Was heisst das denn?

Wogegen konvergiert die Folge [mm] f_n [/mm] denn überhaupt im Raum der Funktionen?

MFG,
Gono.

Bezug
                                
Bezug
Cauchyfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 So 07.11.2010
Autor: jacob17

Um zu zeigen,dass der Raum nicht vollständig ist nimmt man sich doch eine Cauchyfolge in diesem Fall [mm] f_n(x) [/mm] = [mm] x^n [/mm] und zeigt dass deren Grenzwert bzgl. der gegebenen Metrik nicht im Raum der stetigen Funktionen liegt. Für die Funktionenfolgen [mm] f_n [/mm] gilt doch bzgl. der gegebenen Metrik [mm] \limes_{n\rightarrow\infty} [/mm] f(n) [mm] =\begin{cases} 0, & \mbox{für } x <1 \\ 1, & \mbox{für } x= 1 \end{cases} [/mm] Somit ist der Grenzwert nicht Element von [mm] C^o([0,1],IR) [/mm] und dieser metrische Raum ist somit unvollständig. Natürlich voraussgesetzt dass [mm] f_n [/mm] eine Cauchyfolge bzgl.gegebener Metrik ist. Würde hier wie folgt ansetzen
Sei [mm] \varepsilon [/mm] > 0 beliebig und wähle N ? (würde man erst am Schluss festsetzen) Seien [mm] m\ge [/mm] n > N beliebig dann gilt
[mm] d(f_n,f_m) [/mm] = " = [mm] [\bruch{1}{2n+1} [/mm] - [mm] \bruch{2}{n+m+1} [/mm] + [mm] \bruch{1}{2m+1}]^{\bruch{1}{2}} [/mm] Nun ja hier weiß ich einfach nicht wie ich mit dem Hoch [mm] \bruch{1}{2} [/mm] umgehen kann?

Bezug
                                        
Bezug
Cauchyfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:55 So 07.11.2010
Autor: leduart

Hallo
wenn [mm] 0 das ist also kein Problem
Gruss leduart


Bezug
                                                
Bezug
Cauchyfolge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:08 So 07.11.2010
Autor: jacob17

Das heißt ich kann einfach den Abstand ins Quadrat genommen betrachten und dann folgern da [mm] d^2 [/mm] < [mm] \varepsilon^2 [/mm] ist dass auch d  < [mm] \varepsilon. [/mm]
noch eine Frage wie zeigt man das am Besten?

Bezug
                                                        
Bezug
Cauchyfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 So 07.11.2010
Autor: Gonozal_IX

Huhu,

> noch eine Frage wie zeigt man das am Besten?

also mit Nullfolgen solltest du schon umgehen können.
Du kannst oBdA annehmen, dass [mm] $m\ge [/mm] n$
Damit kannst du deinen Kram ein bisschen nach oben Abschätzen und wirst feststellen, dass das ganze immer noch eine Nullfolge ist....

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]