www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Cauchy schwarzsche Ungleichung
Cauchy schwarzsche Ungleichung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy schwarzsche Ungleichung: Hilfestellung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:14 Di 24.11.2009
Autor: Mathegirl

Aufgabe
a und b sind Elemente von [mm] \IR [/mm]
Beweise die Cauchy Schwarzsche Ungleichung:

[mm] \summe_{k=1}^{n}|a_kb_k|\le (\summe_{k=1}^{n}a_k^{2})^\bruch{1}{2}) (\summe_{k=1}^{n}b_k^{2})^\bruch{1}{2} [/mm]


Vielleicht könnt ihr mir sagen, ob das soweit stimmt:

[mm] (\lambda*\summe_{k=1}^{n}a_k,\summe_{k=1}^{n}a_k)+ (\lambda* \summe_{k=1}^{n}a_k,\summe_{k=1}^{n}b_k)+ (\summe_{k=1}^{n}b_k, \lambda*\summe_{k=1}^{n}a_k)*(\summe_{k=1}^{n}b_k, \summe_{k=1}^{n}|b_k) [/mm]

=...

oder muss ich die Summen nicht ausschreiben und nur [mm] a_k [/mm] und [mm] b_k [/mm] einsetzen?


Mathegirl

        
Bezug
Cauchy schwarzsche Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:29 Mi 25.11.2009
Autor: fred97


> a und b sind Elemente von [mm]\IR[/mm]
>  Beweise die Cauchy Schwarzsche Ungleichung:
>  
> [mm]\summe_{k=1}^{n}|a_kb_k|\le (\summe_{k=1}^{n}a_k^{2})^\bruch{1}{2}) (\summe_{k=1}^{n}b_k^{2})^\bruch{1}{2}[/mm]
>  
>
> Vielleicht könnt ihr mir sagen, ob das soweit stimmt:

Nein, das kann Dir niemand sagen, denn da unten steht etwas , von dem man nicht erkennen kann, was es soll. Da steht keine Gleichung oder ähnliches !


Kannst Du mir denn sagen, ob folgendes stimmt:

                   [mm] $xy+sin(z)e^x [/mm] = ...$

Wohl kaum !

FRED


>  
> [mm](\lambda*\summe_{k=1}^{n}a_k,\summe_{k=1}^{n}a_k)+ (\lambda* \summe_{k=1}^{n}a_k,\summe_{k=1}^{n}b_k)+ (\summe_{k=1}^{n}b_k, \lambda*\summe_{k=1}^{n}a_k)*(\summe_{k=1}^{n}b_k, \summe_{k=1}^{n}|b_k)[/mm]
>  
> =...
>  
> oder muss ich die Summen nicht ausschreiben und nur [mm]a_k[/mm] und
> [mm]b_k[/mm] einsetzen?
>  
>
> Mathegirl


Bezug
                
Bezug
Cauchy schwarzsche Ungleichung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:34 Mi 25.11.2009
Autor: Mathegirl

ich meinte ja auch hier nur, ob ich die summen nehmen muss oder ob die [mm] a_k [/mm] und [mm] b_k [/mm] ausreichen..


Mathegirl

Bezug
                        
Bezug
Cauchy schwarzsche Ungleichung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 So 29.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]