www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Cauchy Integralformel?!?
Cauchy Integralformel?!? < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy Integralformel?!?: Was muss ich einsetzen?
Status: (Frage) beantwortet Status 
Datum: 21:53 Mo 30.01.2006
Autor: Liliaaa

Hallo an Alle,

ich muss Integrale mit Hilfe der Cauchy-Integralformel ausrechnen.
Ich hab die Formel ich hab mein Integral, aber ich weiß nicht was ich für f(z) usw. einsetzen muss. Wäre echt nett, wenn mir das jemand erklären könnte. Am besten an Hand von einem Beispiel...

Berechne mit Hilfe der Cauchy Integralformel den Wert des Integrals:

[mm] \integral_{\partial[3i,1]}^ [/mm] { [mm] \bruch{1}{z^2+9}dz} [/mm]

Formel:
f(z) =  [mm] \bruch{1}{2\pi*i} \integral_{C}{ \bruch{f(w)}{w-z} dw} [/mm]

so weit so gut....aber woher weiß ich jetzt was f(w), w, z, f(z) ist?!?
und wie kriege ich die grenzen für mein Integral? Die sind nicht von 3i bis 1, oder?

Vielen Dank schon mal für eure Hilfe
Liliaaa

        
Bezug
Cauchy Integralformel?!?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 Mo 30.01.2006
Autor: t.sbial

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Ich gehe mal davon aus, dass \partial[3i,1] bedeutet kreis vom radius 1 um 3i. Dann geht das so:
z²+9=(z-3i)(z+3i).

Dann gilt:
  \integral_{\partial[3i,1]}^{} { \bruch{1}{z²+9} dz}=$ \integral_{\partial[3i,1]}^{} $$ {\bruch{1}{(z-3i)(z+3i)}dz} $

=$ \integral_{\partial[3i,1]}^ $$ \bruch{ \bruch{1}{z+3i}}{(z-3i)}dz} $
Also dann ist f(z)= \bruch{1}{z+3i} und es gilt
$ \integral_{\partial[3i,1]}^ $$ \bruch{ f(z)}{(z-3i)}dz} $=f(3i)*2 \pi*i

Bezug
                
Bezug
Cauchy Integralformel?!?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:35 Di 31.01.2006
Autor: Liliaaa

Danke schon mal für die Hilfestellung! Jetzt probier ich meine Aufgaben mal aus. Vielleicht kommen dann ja noch fragen?!? :-)


Bezug
        
Bezug
Cauchy Integralformel?!?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Di 31.01.2006
Autor: Liliaaa

Hallo....
Ich habe jetzt die Aufgaben bearbeitet, und wollte nun schauen ob sie richtig sind.

Also hier die Aufgaben:

Berechne mit Hilfe der Cauchy Integralformel die Werte der folgenden Integrale:

a)  [mm] \integral_{\partial K[3i,1]}^ [/mm] { [mm] \bruch{1}{z^2+9} [/mm] dz}

meine Lösung:
=  [mm] \integral_{\partial K[3i,1]}^ [/mm] { [mm] \bruch{1}{(z-3i)(z+3i)} [/mm] dz}
=  [mm] \integral_{\partial K[3i,1]}^ [/mm] { [mm] \bruch{1/(z+3i)}{z-3i} [/mm] dz}

=> f(z) =  [mm] \bruch{1}{z+3i} [/mm]

= [mm] \integral_{\partialK [3i,1]}^ [/mm] { [mm] \bruch{f(z)}{z-3i} [/mm] dz} = f(3i) * 2 [mm] \pi [/mm] i

f(3i) =  [mm] \bruch{1}{6i} [/mm]
[mm] \bruch{1}{6i} [/mm] * 2 [mm] \pi [/mm] i =  [mm] \bruch{1}{3} *\pi [/mm]

b) [mm] \integral_{\partial K[1-i,e]}^ [/mm] { [mm] \bruch{z^2+3z}{z^2+5z+4} [/mm] dz}
=  [mm] \integral_{\partial K[1-i,e]}^ [/mm] { [mm] \bruch{z^2+3z}{(z+1)(z+4)} [/mm] dz}
=  [mm] \integral_{\partial K[1-i,e]}^ [/mm] { [mm] \bruch{(z^2+3z)/(z+4)}{(z+1)} [/mm] dz}

=> f(z) = [mm] \bruch{(z^2+3z)}{(z+1)} [/mm]

= [mm] \integral_{\partial K[1-i,e]}^ [/mm] { [mm] \bruch{f(z)}{(z+1)} [/mm] dz} = [mm] f(1-i)*2\pi*i [/mm]
f(1-i)= [mm] \bruch{2i+3}{-i+5} [/mm]

= [mm] 2\pi*i*f(1-i) [/mm] = [mm] 2\pi*i* \bruch{2i+3}{-i+5} [/mm] = [mm] \bruch{-4\pi+6\pi*i}{-i+5} [/mm]

c) [mm] \integral_{\partial K[1,2]}^ [/mm] { [mm] \bruch{z^3+2z}{(z-1)^3} [/mm] dz}
= [mm] \integral_{\partial K[1,2]}^ [/mm] { [mm] \bruch{z^3+2z}{(z-1)(z^2-2z+1)} [/mm] dz}
= [mm] \integral_{\partial K[1,2]}^ [/mm] { [mm] \bruch{(z^3+2z)/(z^2-2z+1)}{(z-1)} [/mm] dz}

=> f(z) = [mm] \bruch{(z^3+2z)}{(z^2-2z+1)} [/mm]

=  [mm] \integral_{\partialK [1,2]}^ [/mm] { [mm] \bruch{f(z)}{z-1} [/mm] dz} = f(-1) * 2 [mm] \pi [/mm] i
f(-1) = - [mm] \bruch{3}{4} [/mm]
[mm] 2\pi*i*f(-1) [/mm] = [mm] 2\pi*i*(- \bruch{3}{4}) [/mm] =  [mm] \bruch{3*i\pi}{2} [/mm]

Über Korrekturen wäre ich echt dankbar.
Grüße Liliaaa

Bezug
                
Bezug
Cauchy Integralformel?!?: Antwort
Status: (Antwort) fertig Status 
Datum: 23:46 Mi 01.02.2006
Autor: leduart

Hallo Lilia
> Also hier die Aufgaben:
>  
> Berechne mit Hilfe der Cauchy Integralformel die Werte der
> folgenden Integrale:
>  
> a)  [mm]\integral_{\partial K[3i,1]}{ \bruch{1}{z^2+9} dz}[/mm]
>  
> meine Lösung:
> =  [mm]\integral_{\partial K[3i,1]} {\bruch{1}{(z-3i)(z+3i)} dz}[/mm]
>  =  [mm]\integral_{\partial K[3i,1]}{ \bruch{1/(z+3i)}{z-3i} dz}[/mm]
>  
> => f(z) =  [mm]\bruch{1}{z+3i}[/mm]
>  
> = [mm]\integral_{\partialK [3i,1]}{\bruch{f(z)}{z-3i}dz} = > f(3i) * 2 \pi* i[/mm]
>  
> f(3i) =  [mm]\bruch{1}{6i}[/mm]
>  [mm]\bruch{1}{6i}[/mm] * 2 [mm]\pi[/mm] i =  [mm]\bruch{1}{3} *\pi[/mm]

Richtig

> b) [mm]\integral_{\partial K[1-i,e]} {\bruch{z^2+3z}{z^2+5z+4} dz}[/mm]
>  =  [mm]\integral_{\partial K[1-i,e]}{\bruch{z^2+3z}{(z+1)(z+4)} dz}[/mm]
>  =  [mm]\integral_{\partial K[1-i,e]}^[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{

> [mm]\bruch{(z^2+3z)/(z+4)}{(z+1)}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

dz}

>  
> => f(z) = [mm]\bruch{(z^2+3z)}{(z+1)}[/mm]

Falsch f(z)=  [mm]\bruch{(z^2+3z)}{(z+4)}[/mm]

> = [mm]\integral_{\partial K[1-i,e]}^[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{ [mm]\bruch{f(z)}{(z+1)}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

dz}

> = [mm]f(1-i)*2\pi*i[/mm]

FALSCH f(-1)

>  f(1-i)= [mm]\bruch{2i+3}{-i+5}[/mm]
>  
> = [mm]2\pi*i*f(1-i)[/mm] = [mm]2\pi*i* \bruch{2i+3}{-i+5}[/mm] =
> [mm]\bruch{-4\pi+6\pi*i}{-i+5}[/mm]
>  
> c) [mm]\integral_{\partial K[1,2]}^[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{ [mm]\bruch{z^3+2z}{(z-1)^3}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> dz}
>  = [mm]\integral_{\partial K[1,2]}^[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{

> [mm]\bruch{z^3+2z}{(z-1)(z^2-2z+1)}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

dz}

>  = [mm]\integral_{\partial K[1,2]}^[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{

> [mm]\bruch{(z^3+2z)/(z^2-2z+1)}{(z-1)}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

dz}

>  
> => f(z) = [mm]\bruch{(z^3+2z)}{(z^2-2z+1)}[/mm]
>  
> =  [mm]\integral_{\partialK [1,2]}^[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{ [mm]\bruch{f(z)}{z-1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

dz} =

> f(-1) * 2 [mm]\pi[/mm] i

falsch f(1) nicht f(-1)

>  f(-1) = - [mm]\bruch{3}{4}[/mm]
>  [mm]2\pi*i*f(-1)[/mm] = [mm]2\pi*i*(- \bruch{3}{4})[/mm] =  
> [mm]\bruch{3*i\pi}{2}[/mm]

Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]