www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Cauchy-Produkt
Cauchy-Produkt < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Cauchy-Produkt: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:47 So 04.12.2005
Autor: roxy

Hallo!
hab folgende Aufgabe:
Berechne das Cauchy-Produkt von [mm] \summe_{k=0}^{\infty}q^k [/mm] mit sich selbst für [mm] q\in\IC [/mm] mit |q| < 1 und folgere: [mm] \summe_{k=1}^{\infty}kq^{k-} [/mm] = [mm] 1+2q+3q^2+...= \frac{1}{(1-q)^2}. [/mm] Verallgemeinere die Reihe zu eine Reihendarstellung von [mm] \frac{1}{(1-q)^m} [/mm] für [mm] m\in\IN [/mm] und |q| < 1.

ich habe den Cauchy-Produkt mit sich selbst geschrieben, u.z.:

[mm] (\summe_{k=0}^{\infty}q^k)*(\summe_{k=0}^{\infty}q^k) [/mm] = [mm] \summe_{k=0}^{infty} c_{n} [/mm] wobei
[mm] c_{n} [/mm] = [mm] \summe_{k=0}^{\infty}a_{k}b{n-k} [/mm]  =  [mm] \summe_{k=0}^{\infty}q^k*q^{n-k} [/mm] = [mm] \summe_{k=0}^{\infty}q^n [/mm] = [mm] \frac{1}{1-q} [/mm] (ist die harmonische Reihe).
Daraus zu folgern, dass [mm] \summe_{k=1}^{\infty}kq^{k-} [/mm] = [mm] 1+2q+3q^2+...= \frac{1}{(1-q)^2} [/mm] ist, wahrscheinlich, durch vollständige Induktion zu beweisen...aber wie?...meine erste Summe geht von k = 0 und die 2-te von k = 1.
Die Verallgemeinerung von [mm] \frac{1}{(1-q)^m} [/mm] schrieb ich als: [mm] \summe_{k=1}^{\infty}\frac{1}{(1-q)^m} [/mm] = 1 + mq + [mm] (m+1)q^m [/mm] + [mm] (m+2)q^{m+1} [/mm] + [mm] (m+3)q^{m+2} [/mm] + ....ist das, was ich schreiben sollte?
Danke
roxy

        
Bezug
Cauchy-Produkt: Hinweis
Status: (Antwort) fertig Status 
Datum: 22:24 So 04.12.2005
Autor: MathePower

Hallo roxy,

> Hallo!
>  hab folgende Aufgabe:
>  Berechne das Cauchy-Produkt von [mm]\summe_{k=0}^{\infty}q^k[/mm]
> mit sich selbst für [mm]q\in\IC[/mm] mit |q| < 1 und folgere:
> [mm]\summe_{k=1}^{\infty}kq^{k-}[/mm] = [mm]1+2q+3q^2+...= \frac{1}{(1-q)^2}.[/mm]
> Verallgemeinere die Reihe zu eine Reihendarstellung von
> [mm]\frac{1}{(1-q)^m}[/mm] für [mm]m\in\IN[/mm] und |q| < 1.
>  
> ich habe den Cauchy-Produkt mit sich selbst geschrieben,
> u.z.:
>  
> [mm](\summe_{k=0}^{\infty}q^k)*(\summe_{k=0}^{\infty}q^k)[/mm] =
> [mm]\summe_{k=0}^{infty} c_{n}[/mm] wobei
> [mm]c_{n}[/mm] = [mm]\summe_{k=0}^{\infty}a_{k}b{n-k}[/mm]  =  
> [mm]\summe_{k=0}^{\infty}q^k*q^{n-k}[/mm] = [mm]\summe_{k=0}^{\infty}q^n[/mm]
> = [mm]\frac{1}{1-q}[/mm] (ist die harmonische Reihe).

das stimmt nicht ganz:

[mm] \sum\limits_{k = 0}^\infty {q^k } \;\sum\limits_{k = 0}^\infty {q^k } \; = \;\sum\limits_{k = 0}^\infty {\sum\limits_{l = 0}^k {q^l \;q^{k - l} } } \; = \sum\limits_{k = 0}^\infty {\sum\limits_{l = 0}^k {q^k } } \; = \;\sum\limits_{k = 0}^\infty {(k + 1)\;} q^k [/mm]


>  Daraus zu folgern, dass [mm]\summe_{k=1}^{\infty}kq^{k-}[/mm] =
> [mm]1+2q+3q^2+...= \frac{1}{(1-q)^2}[/mm] ist, wahrscheinlich, durch
> vollständige Induktion zu beweisen...aber wie?...meine
> erste Summe geht von k = 0 und die 2-te von k = 1.

Da ist nichts mit Induktion zu machen.

>  Die Verallgemeinerung von [mm]\frac{1}{(1-q)^m}[/mm] schrieb ich
> als: [mm]\summe_{k=1}^{\infty}\frac{1}{(1-q)^m}[/mm] = 1 + mq +
> [mm](m+1)q^m[/mm] + [mm](m+2)q^{m+1}[/mm] + [mm](m+3)q^{m+2}[/mm] + ....ist das, was
> ich schreiben sollte?

Nein.

Gruß
MathePower

Bezug
                
Bezug
Cauchy-Produkt: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 00:44 Mo 05.12.2005
Autor: roxy

Hallo MathePower!
und Danke für deine Hilfe!

> das stimmt nicht ganz:
>  
> [mm] \sum\limits_{k = 0}^\infty {q^k } \;\sum\limits_{k = 0}^\infty {q^k } \; = \;\sum\limits_{k = 0}^\infty {\sum\limits_{l = 0}^k {q^l \;q^{k - l} } } \; = \sum\limits_{k = 0}^\infty {\sum\limits_{l = 0}^k {q^k } } \; = \;\sum\limits_{k = 0}^\infty {(k + 1)\;} q^k[/mm]

und weiter  [mm] \summe_{k = 0}^\infty (k+1)*q^k [/mm] = [mm] \frac {1}{(1-q)^{2}} [/mm] wie komme ich aber auf [mm] \summe_{k=1}^{\infty}kq^{k-1}? [/mm]

habe jetzt die Verallgemeinerung:  
wegen der absoluten Konvergenz, kann der Multiplikationssatz angewendet werden:
[mm] \frac{1}{(1-q)^m} [/mm] = [mm] \summe_{n=0}^{\infty}\frac{(n+1)(n+2)....(n+m-1)}{(k-1)!}*q^{n} [/mm]

leider habe ich weder den Multiplikationssatz verstanden, noch wie man auf die Summe gekommen ist...

Danke & Gruß
roxy

Bezug
                        
Bezug
Cauchy-Produkt: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:24 Mi 07.12.2005
Autor: matux

Hallo roxy!


Leider konnte Dir keiner hier mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]