www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Brüche
Brüche < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Brüche: Binomen
Status: (Frage) beantwortet Status 
Datum: 12:13 Do 21.05.2009
Autor: ironman2943

Aufgabe
(a+b)²/(a-b)/(a²-b²)

Lösungsansatz:

(a²+2ab+b²)/a-b*(1)/(a-b)*(a+b)

kann mir jemand weiterhelfen
komme auf nen anderes ergebnis

Habe die Lösund die lautet

(a+b)/(a-b)²



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Brüche: umformen
Status: (Antwort) fertig Status 
Datum: 12:16 Do 21.05.2009
Autor: Loddar

Hallo ironman!


Aufgrund Deiner gegeben Lösung lautet Deine Aufgabe wohl:
[mm] $$\bruch{\bruch{(a+b)^2}{a-b}}{a^2-b^2}$$ [/mm]
Dann brauchst Du zunächst nur im untersten Nenner die 3. binomische Formel anwenden:
$$= \ [mm] \bruch{\bruch{(a+b)^2}{a-b}}{(a+b)*(a-b)}$$ [/mm]
$$= \ [mm] \bruch{(a+b)^2}{a-b}*\bruch{1}{(a+b)*(a-b)}$$ [/mm]
Kürzen ... fertig!


Gruß
Loddar


Bezug
                
Bezug
Brüche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:25 Do 21.05.2009
Autor: ironman2943

LOL das ja einfach ich habe viel zu kompliziert gedacht.
Du danke dir für die schnelle antwort.
Ich glaub ich brauch nen Kaffee um richtig wach zu werden

Bezug
        
Bezug
Brüche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:34 Do 21.05.2009
Autor: ironman2943

Aufgabe
(b-a)/a+b : (a²-b²)/(a+b)²

Komme auf ergebnis 0
Laut Lösung -1

Lösungsweg:

(b-a)*(a+b)²/(a+b)(a+b)(a-b)

wenn ich das kürze kommt 0 raus
oder wo ist mein Fehler

Bezug
                
Bezug
Brüche: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Do 21.05.2009
Autor: leduart

Hallo
solange [mm] a\ne [/mm] b kann da nie 0 rauskommen. du kannst zur Probe ja a=0 b=1 oder a=2, b=1 einsetzen.
Bitte schreib die aufgaben lesbarer. klick auf die Formel in der ersten Antwort, dann siehst du wie das geht. und schreib deine Umformung aus.
1. Doppelbruch in Produkt aus 2 Bruechen. dann wieder 3. bin Formel. dann kuerzen.
Zur Probe kann man am anfang und Ende einfache Zahlen einsetzen.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]