www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Bruch
Bruch < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bruch: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 17:42 Di 13.10.2009
Autor: exox

Aufgabe
(x²-4)+(x+2)
----------------
       x+2


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

die ------------- soll ein bruchstrich sein habs jetzt noch nicht so geblickt mit den ...


komme nicht drauf wie rechne ich das könnten sie mir Rechenweg bis zum Lösung zeigen.

        
Bezug
Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Di 13.10.2009
Autor: Disap

Hallo exox!

> (x²-4)+(x+2)
>  ----------------
>         x+2
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> die ------------- soll ein bruchstrich sein habs jetzt noch
> nicht so geblickt mit den ...

Zumindest ist es lesbar :)

> komme nicht drauf wie rechne ich das könnten sie mir
> Rechenweg bis zum Lösung zeigen.

Was rechnen? Willst du den Term vereinfachen oder ... ?

[mm] $\frac{(x^2-4)+(x+2)}{(x+2)}$ [/mm]

Da gilt das dritte Binom, [mm] (x^2-4) [/mm] = (x+2)(x-2)

Und damit kommst du auf

[mm] $\frac{(x^2-4)+(x+2)}{(x+2)} [/mm] = [mm] $\frac{(x+2)(x-2)+(x+2)}{(x+2)}$ [/mm]

Und dann kannst du das (x+2) wegkürzen

[mm] $=\frac{(x-2)+1}{1} [/mm] = x-2 + 1 = x-1$

War es das, was du wolltest?

MfG
Disap




Bezug
                
Bezug
Bruch: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:53 Di 13.10.2009
Autor: exox

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
$\frac{(x^2-4)+(x+2)}{(x+2)$

Die Aufgabe Lautet

(x²-4)+(x+2)
----------------
        x+2  

Unten sind doch keine Klammer wieso machen sie da plötzlich klammern hin?

Bezug
                        
Bezug
Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Di 13.10.2009
Autor: Disap


> [mm]\frac{(x^2-4)+(x+2)}{(x+2)[/mm]
>  
> Die Aufgabe Lautet
>  
> (x²-4)+(x+2)
>  ----------------
>          x+2
> Unten sind doch keine Klammer wieso machen sie da
> plötzlich klammern hin?

Ist das das Einzige, was du nicht verstanden hast? Das wäre ja schon mal gut.
Ich habe da Klammern hingemacht, damit es sich für dich besser lesen lässt, damit du weißt, was gekürzt wird. "Unten" kannst du dir die Klammern auch wegdenken. Es ist genauso richtig.

Übrigens reden wir uns im Forum alle mit "Du" an.

Sonst noch etwas unklar?

MfG
Disap


Bezug
                                
Bezug
Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:57 Di 13.10.2009
Autor: exox

Kann man das jetzt ohne klammer einfach so kürzen also summe?

Bezug
                                        
Bezug
Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Di 13.10.2009
Autor: Disap


> Kann man das jetzt ohne klammer einfach so kürzen also
> summe?

Ja, aber es nicht wirklich eine Summe. Weil mit mehr Rechenschritten:

$ [mm] \frac{(x^2-4)+(x+2)}{(x+2)} [/mm] $

$= [mm] \frac{(x^2-4)+(x+2)}{(x+2)} [/mm]

$= [mm] \frac{(x+2)(x-2)+(x+2)}{(x+2)}$ [/mm]

$= [mm] \frac{(x+2)*[(x-2)+1]}{(x+2)}$ [/mm]

$= [mm] \frac{(x+2)}{x+2}*\frac{[(x-2)+1]}{1}$ [/mm]

[mm] $=\frac{x+2}{x+2}*[x-2+1] [/mm] = 1*[x-2+1] = x-2+1 = x-1$



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]