www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Box- und Produkttopologie
Box- und Produkttopologie < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Box- und Produkttopologie: Erklärung
Status: (Frage) beantwortet Status 
Datum: 16:27 Fr 12.08.2011
Autor: Loko

Aufgabe
Kann mir jemand den Unterschied erklären?

Wir haben in der Vorlesung die Boxtopologie nur kurz erwähnt. Jetzt beim Lernen würde mich aber doch der Unterschied zur Produkttopologie interessieren.
Ich hab auch schon ein bisschen rumgesucht, und gefunden, dass die Basen sich so unterscheiden:
[mm] \IR^{w} [/mm] := [mm] \produkt_{i \in \IN}\IR [/mm] die Menge aller reellen Folgen
[mm] B_{Box} [/mm] = [mm] \{ \produkt_{i \in \IN} U_{i} : U_{i}\subseteq \IR offen \} [/mm] = [mm] \{\bigcap_{i \in \IN}p_{i}1{-1}(U_{i}) : U_{i}\subseteq \IR offen \} [/mm]
und
[mm] B_{Prod} [/mm] = [mm] \{ \bigcap_{i \in K}p_{i}1{-1}(U_{i}) : K \subseteq \IN endlich und U_{i} \subseteq \IR offen \} [/mm]
(Mit den [mm] p_{i} [/mm] die Projektionen)

Ist also der Unterschied, dass die Boxtopologie den unendlichen Schnitt als Basis hat? Mit ist nicht klar was ich daraus schließen kann.....

Ich hoffe es hat wer Lust zu antworten :)

Viele Grüße

Loko

        
Bezug
Box- und Produkttopologie: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Fr 12.08.2011
Autor: f12

Guten Tag Loko

Zuerst einmal zu Definition:

Produkt-Topologie:

Sei [mm] X_\alpha [/mm] topologischer Raum für alle $\ [mm] \alpha [/mm] $ (in deinem Fall $\ [mm] \IR [/mm] $) und $\ [mm] \alpha \in [/mm] J$ eine Indexmenge. Dann schaust du dir das kartesische Produkt an:

[mm] \produkt_{\alpha \in J} X_\alpha[/mm]

Darauf definieren wir nun die Produkttopologie:

[mm] S_\alpha = \{\pi_\alpha^{-1}(U_\alpha) | U_\alpha \text{ offen in } X_\alpha \} [/mm]

und

[mm] S = \bigcup_{\alpha \in J} S_\alpha[/mm]

Dann ist die Produkttopologie die Topologie, die durch die Subbasis $\ S $ generierte Topologie. Die Abbildung $\ [mm] \pi_\alpha [/mm] $ ist die normale Projektion auf $\ [mm] X_\alpha [/mm] $.

Die Boxtopologie ist "einfacher" definiert: Sie ist die Menge aller Mengen, der Form:

[mm]\produkt_{\alpha \in J} U_\alpha[/mm] wobei $\ [mm] U_\alpha [/mm] $ offen ist in $\ [mm] X_\alpha \forall \alpha \in [/mm] J$.

Mann kann zeigen, dass die beiden Topologien für ENDLICHE Produkte identisch sind. Sie unterscheiden sich nur im unendlichen Fall.

Man verwendet aber lieber die Produkttopologie, da viele Eigenschaften nur für sie gelten. Ich empfehle dir das Buch: Topology von James R. Munkres. Dies ist meines Erachtens das beste Buch über Topologie. Es zählt zu meinen absoluten Favoriten unter allen Mathebüchern.

Freundliche Grüsse

f12

Bezug
                
Bezug
Box- und Produkttopologie: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:05 Sa 13.08.2011
Autor: Loko

Vielen Dank für die schnelle Antwort!
Das Buch werd ich mir mal angucken :)

Lg Loko

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]